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N another with a short pause between axes. Since the test would excite response from two

directions of testing, it would be necessary to double the sweep rate, or halve the
duration in some other manner. Three existing I-D test levels would completely define the
specification for such a test.

To improve on the 2-D sine test, it is necessary to give up on the sinusoidal test
waveform. Much the same thing can be accomplished by using wavelets that are virtually
all at a single frequency. Through a complicated procedure of rotating the circle from the
2-D test about an axis, and then tumbling the axis, a 3-D sine test can be achieved whose
trajectory resembles a ball of string. The extent to which this test produces similar
gains and fatigue cycle counts compared to the conventional 1-D test has been demonstrated.1
The 3-D test is better at exciting fatigue cycles spatially than three 1-D tests; however,
since it does not have a sinusoidal waveform the gain is substantially reduced. Thus
there are advantages and disadvantages to the 3-D sine test, while the 2-D sine test has
no disadvantages. The 3-D test is also implementable without any extra data given three
I-D test levels.

The 3-D random test is specified in terms of the spectral matrix defining the state of
vibration at the table. The appropriate 3-D test is achieved when the three I-D test
specifications are used as specification values for the diagonal with zero off diagonal
terms. In order for the specification amplitudes to be the largest and smallest amplitude
experienced spatial from the test, it is necessary for the real part of the off diagonal
terms to be zero. This insures that the specification values are the principal values for
the Hermitian spectral matrix. The imaginary part of the spectral matrix can be any value
thus zero is a good choice. The imaginary part does not affect the PSD values at all, but
determines the relative phase angles spatially. Since single structural modes do not
respond to the relative phase angle, the imaginary part is less important than the real
part.

In developing these results two potentially signriffcant problems have been uncovered with
the 3-D system. Traditionally signals for random testing are clipped at three sigma (i.e.
three times the wideband RMS). Thus this same practice was followed for the 3-D system;
each shaker output was individually clipped at three sigma. This produces a box shaped
region where the test resides. Unfortunately the corners of the box are over five sigma
away, thus raising the possibility of having repeated tests with unequal peak amplitudes.
Worse, the peak amplitude is a function of spatial orientation. It is different in the
shaker directions than at an angle to the shaker. This problem has now been widely
understood and there are plans to correct it later in the program. The resultant vector
will be clipped at a level consistent with the chi-squared distribution, e.g., 3.76 sigma.

The other problem that may have been uncovered is much newer and consequently hasn't
reached the same level of maturity. The random control system reportedly operates on a
preference order of 1) PSD values, 2) coherence magnitudes, and 3) phase angles. As was
argued earlier, the real part of the spectral matrix is what matters. It would be better
if the preference order was 1) PSD values, 2) real off diagonal values, 3) imaginary off
diagonal values. This would control the struct_.Ji response more adequately.

The work to date has been very successful in ach.L, ing the objectives sought. The project
is in excellent position to move on to the "innovative" as opposed to "generic" part of
the program.
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Notation 3

xAj M the j-th amplitude in the finite Fourier expansion for X(t).

A(X) - the probability of the standard normal distributed random variable
x being in the region -X_<xSX.

A(xl,x 2 lA,a) - the probability of the normally distributed random variable X I
being in the region Xl<_X<x 2 given that the mean of X is y and
the standard deviation of X is. 3

Ai - i axis sine test amplitude, may vary with frequency.

C - any constant; in sine test gain calculations, the cosine term unknown
coefficient being solved for.

x
C0 - the constant in the finite Fourier expansion, 0 because the mean of

the data is zero.

C i the j-th cosine coefficient in the finite Fourier expansion for X(t). i

cosi - the direction cosine in the i axis direction.

gout - a displacement value as opposed to acceleration or velocity.

(fi) - the external forces applied at physical location I and component i.

xl I
iv



IFi(f) - the theoretical continuous Fourier transform of component i.

Fc M the force term associated with the cosine.

Fs M the force term associated with the sine.

Gii(f) - the real, ii-th term from the spectral matrix diagonal.

dij(f) - the complex, ij-th term from the spectral matrix.

I G the spectral matrix at a point in space.
3x3

I ii(w) - the transfer function for the modal gain spike.

Hij(f) - the transfer function from the i-th component to the j-th
component.

S - the imaginary part of a complex number.

i L - the number of terms in the finite Fourier series - (n-l)/2.

I - the number of locations for the structural modes.

L(X,YIp) - the probability of the standard normal distributed random
variables x and y being in the region --_<x5X and -cySY given

that the correlation coefficient between x and y is p, i.e.,

the bivariate normal distribution.

5 N - the number of frames used in averaging frequency domain data.

n - the number of data points in the time history being considered.

Sn- the sweep rate in octaves per minute for sine testing.

N(X 3a) - a normal distribution where the region of interest is specified in5 the argument.

P a a probability.

3 P(X) - the probability of the standard normal distributed random variable
x being in the region -'_,x:_X.

P(x 2 1v) - the probability of the chi-squared distributed random variable X 2

being in the region 0SX2 x 2 given there are v degrees of freedom.

P(xip,a) - the probability of the normally distributed random variable X
being in the region -o<X<x given that the mean of X is p and the

standard deviation of X is a.

I v
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P(<X>I[V]) - the probability of the normally distributed random variables 1
<x> all being in the region -x_xijX i given the values for the
covariance matrix, V, i.e., the multivariate normal
distribution.

Q(X) - the probability of the standard normal distributed random variable

x being in the region X-<x-Sco.I

Q(xlp,a) - the probability of the normally distributed random variable X
being in the region x:5<< given that the mean of X is M and the
standard deviation of X is a.

q m intermediate variable calculating the roots of a 3x3 matrix. I
qj - the modal response of the j-th mode.

X - the real part of a complex number.

r m intermediate variable calculating the roots of a 3x3 matrix.

R - the resultant vector or the radius vector depending on context. U
R(X) - the probability of the standard normal distributed random variable

x being in either of the two regions X-x-co and -oxSX.

R(xlA,a) - the probability of the normally distributed random variable X
being in either of the two regions x5YX-< and -x<_YX x given that
the mean of X is A and the standard deviation of X is a.

Ri(O) - the Euler angle rotation through 6 angle about the i axis. 3
3x3

RMS - root mean square value.

RMS i - the root mean square response of the i-th component.

S - the sine term unknown coefficient being solved for.

s- intermediate variable calculating the roots of a 3x3 matrix.

s2  intermediate variable calculating the roots of a 3x3 matrix. U
S- the j-th sine coefficient in the finite Fourier expansion for X(t).

S(X,Y,Z) - the spherical normal distribution.

T - the time between samples -1/sampling rate.

Ui - a column vector with one in component i and zero everywhere else.
3xl

V - the covariance matrix.

vi 3
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Vi  principal roots of the covariance matrix.3 (V] - the covariance matrix.

3x3

SVii the variance or mean square value of the i-th component.

Vij the covariance between the i and j components.

X - a standard normal or normally distributed random deviate.

x - a normally distributed or standard normal random deviate.

I X(t) -the time history for the X axis.

S<X> a row vector of normally distributed random deviates.

X} - a column vector of normally distributed random deviates.

[X] the observations matrix: number of data points by 3 coordinates.
nx3

[X'] - the transpose of [X]. In general, prime means transpose.
3xn

3 xi - the x component of the i-th 3-D data point.

x - the average value of the x components of the data assumed zero.

3 Xnew - rescaled values of the xi data found by dividing by RMSx.

Y - a standard normal distributed random deviate usually associated with the
Y axis shaker.

Y(t) - the time history for the Y axis.

I yi~y the y component of the i-th 3-D data point.

y -the average value of the y components of the data assumed zero.

Ynew - rescaled values of the Yi data found by dividing by RMSy.

Z - A standard normal distributed random deviate usually associated with the
Z axis shaker.

Z(t) - the time history for the Z axis.

Z(xlp,a) - the integrand of the normal distribution with mean M and
standard deviation a.

I zi - the z component of the i-th 3-D data point.

I vii
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z - the average value of the z components of the data assumed zero.

Znew - rescaled values of the zi data found by dividing by RMSz.

a any angle.

- any angle. I
ij (f) - the cohererie function between the i-th and j-th components.

j - the critical damping ratio of the J-th mode.

6 Euler angle rotation about z. I
9 8 the j-th phase angle in the finite Fourier expansion for X(t).

Oi(f) - the phase angle of the i-th component at a frequency.

A- the perturbation variable in the characteristic equation.

- the mean of a random variable.

Pij - the correlation coefficient between the i and j components. I

a - the standard deviation of a random variable.

ri - the tumble frequency about the i direction. I
- Euler angle rotation about y.

i modal response in direction i at the shaker head. I
-4} - a general rotation vector, i.e., Ox2 +y2 +z -1. I

3xl

[0] - the eigen values of the variance matrix.
3x3

i
<0.> - the mode shape for the j-th mode over all i locations.
x1A

X2 - A chi-squared distributed random deviate.

S- Euler angle rotation about x. 3
- the input sinusoid initial phase angle with respect to t-O.

forcing frequency in radians/second.

w(t) - the swept sinusoidal time history. 3
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I" wj - the modal frequency (in radians/sec) of the j-th mode.

~ wn = the undamped natural frequency of the mode.

o the initial frequency for the swept sine test.

the complex conjugate, i.e., zij*zji - Izijlzji + SzijZji.

the average value.

3 a complex quantity with an amplitude and a phase.

A 0 a rotated value in some other orientation than the original X, Y, Z

orientation.

L - the phase angle of a complex quantity.

I I J - the magnitude of a complex quantity or determinant of a matrix.

the point in the equations where continuous theoretical variables are

equated to physical quantities.
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CHAPTER 1 GENERIC 3-D SINE TESTING

INTRODUCTION

Work has been underway for several years on a three axis test machine at Harry
Diamond Laboratories (HDL).I At this time a 3-D test machine is a one of a

kind item built to the specifications of the customer. Other 3-D test
facilities exist and some information is available about 3-D random testing,
however, there doesn't appear to be information about 3-D sine testing. HDL

has requirements to test hardware with sine tests and would like a test
procedure that can be implemented based on the existing I-D test specification.
Such a test has been termed a "generic" sine test as opposed to an "innovative"

test technique.

Since the 3-D system has three shakers and is capable of operating in three
dimensions at once, it seems reasonable that a 3-D system could perform a

single test in 3-D that would be equivalent to testing in three independent
directions with conventional equipment. The test time should be reduced to 1/3
the time for three conventional one axis tests. Also, the added capability of
controlling in 3-D should allow better spatial coverage. Instead of being
satisfied with shaking the test article to the test level in three orthogonal
directions, it should be possible to shake the test article to the prescribed

levels in all possible directions.

Unfortunately, the sinusoidal waveform is, at most, fundamentally 2-D. As will
be demonstrated, it is not possible to shake in three dimensions at once with

sinusoidal forcing, e.g., to have three orthogonal components being excited at
a single frequency at the same time. By testing in a circle in 2-D it is
possible to excite two dimensions at once with sinusoidal forcing. Performing
three orthogonal tests in circles is the simplest and probably the best

solution to sine testing in 3-D. However, true 3-D testing can be achieved by
rotating the circle. Using this approach the time history is sinusoidal in one
direction and a modulated sinusoid in the other two directions. There is a

preferred orientation. By slowly rotating in multiple directions at different
frequencies thus tumbling the circle, all directions become reasonably equal.
The spatial trajectory for this test looks fairly random, and the time

histories in all three directions are roughly equivalent, modulated sinusoids.

EQUATIONS FOR THE GENERIC I-D SINE TEST

In 1-D, the shaker motion of the conventional sine test can be represented by3 the following very simple equation:

X(t) - Ax sin(wt) i)

3 Where the frequency, w, is typically swept at a sweep rate of n octaves/min as
shown below (t is assumed to be in seconds):

(ln 2/60)nt

W(t) = Wo e

Exponential sweep rates result in a constant change in frequency per cycle of
the resulting test. Differentiating Equation 2 (aw/at) gives Equation 3:

1-1



I
Aw/cycle - (aw/8t) (1/w) - (ln 2/60) n - .011552 n 3)

Equation 3 says that for each cycle of the sine test, the frequency advances a
constant amount. At n-i oct/min sweep rate, the frequency increases by .011552

Hz on every cycle no matter what frequency the cycle occurs at.

The frequency delta between half power points on a mode is about 2(w. Thus the
number of cycles between half power points on a mode is as shown in Equation 4:

cycles - 2 w / (In 2/60)n 4)

Evaluating this expression at normal test values, e.g., Q - I/2 - 20 so - I
.025, n- 2 oct/min, w - 10 Hz - 62.8 radians/sec gives 136 cycles between the
half power points. The value of 136 cycles is a low value for typical

operation. At very low frequencies, low damping, or high sweep rates the
number of cycles between half power points can be even lower. In order for a
3-D test to use conventional swept sine sweep rates, it is necessary for the 3-

D surface to be spatially covered many times in 136 cycles.

The conventional sine test is extended into 3-D by performing three I-D sine
tests in three orthogonal directions. By doing this, a structural mode
oriented in any arbitrary direction is excited by the component of each sine I
test in the modes' direction. Suppose the local mode shape at the shaker
interface is < , y,oz> . Normalizing this vector, gives the direction cosines

for the mode's local direction:

x y z

dir cos-< 2 2 2 . > - <Cos cos Cosz> 5)4x+y+4 Z'x z x #y z

The component of each sine test in the mode's local direction is simply the dot

product of the direction cosines times the amplitude of the test oriented along
each axis:

component from X test - <A x,O,O>.<cos xcos ycosz> - Axcosx I
component from Y test - <0,A ,0>.<cos xcos ycosz> - Ay cos 6)

component from Z test - <0,0,A z>.<cos COS ,cos z> - A cos I
The mode will respond along it's local direction to each of these three inputs

in turn. By plotting the locus of the points over all direction cosines from a
single I-D sine test, one obtains two circles in 2-D or two spheres in 3-D. A

three view drawing of the surface for a single Z axis test is shown in Figure
i1. Figure I illustrates the amplitude of the input to a mode as a function of I
direction. A ray from the origin intercepts the surface in Figure I at a

value indicating the amplitude a mode in that direction would experience as its
input. The largest input is equal to one and occurs when the mode is directed
along the Z axis in the test direction. The input is attenuated to zero when
the mode lies in the X-Y plane. The sine test shaker head motion would plot as
a line between -I and 1 along the Z axis.

1-2 I
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3 Figure 1 Conventional 1-D Sine Test Modal Input by Direction

3 EXTENSION TO GENERIC 2-D SINE TESTING

By shaking in a circle it is possible to shake in two directions at once using
sinusoidal forcing. Two orthogonal components can be exciting at the same time

I.I

by using a sine in one direction and a cosine in the other direction.

Xt-Axsnw) where: w(t) - cwo e l 2/60)nt 7)

III

Z(t) - Az cos(wt)

This is a very efficient method of sine testing because the shaker is moving at
I full amplitude at all times during the test. In the conventional -D test, the

shaker head spends most of its time in the vicinity of the origin. Using a
circle, the shaker head never goes through the origin at all. The shaker is
always testing at full amplitude in some direction. Since the waveform is
sinusoidal the shock spectra response, fatigue cycle count, frequency content,
and sweep rate attenuation are all exactly the same in the test axis directions
as for a conventional l-D sine test. Further, in the plane of the test, all of

i these quantities are the same in any direction if the input levels are equal.
If the input levels are not equal, the envelopes are ellipsoidal with the two

Stest levels as the major and minor axes.

When one axis can be eliminated, it is sufficient to run the shaker in only one
swept 2-D test. When many specimens are tested at once and they are randomly
oriented in the test fixture, one 2-D test will suffice. Alternatively, a .D
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test might be used when there is an axis of symmetry in the test specimen. 3
Under either of these conditions, the circular test is ideal. The elapsed test
time can be cut by half and only one axis of test is required.

To achieve 3-D spatial coverage with this test, it is necessary to operate one
at a time in three circles at right angles to each other. Three separate tests
must be run, but no axis changes need to be made, since the shaker system moves
in all three directions. The X-Z test would excite both the X and Z axis
fully, the X-Y test would excite both the X and Y axis fully, and finally the
Y-Z test would excite both the Y and Z axis fully. Notice two tests excite
each axis fully. To avoid putting twice as many cycles on the test article as I
in three 1-D tests, it is necessary to either double the sweep rate, or perform
up sweeps on one test and down sweeps on another test, or some other procedure
to halve the test time. i
The circular test is by far the simplest test identified to date that takes
advantage of the 3-D shaker. It achieves improved spatial coverage because the
entire plane is tested to an ellipsoidal level (if Ax o Az) instead of simply
orienting all the energy along the axes. For example, consider a mode at the
direction cosines from Equation 5

component from X-Z test - <A O,A ><cos ,Cos ,cos z> - A cos z +A z

component from X-Y test - <A x A >*<cos ,Cos cos > - A x cosx y cos y8)

component from Y-Z test - <O,A y,A z>-<cos xcos ycos > - A cos +A cosyz x y z y y z z

Since the sine test amplitudes go in both the plus and minus directions, the
extra term in Equation 8 always adds to the amplitude in one direction or the
other. Thus the amplitude from the 2-D test is always larger than the
amplitude from the 1-D test. It is equal to the I-D test plus a positive term. I
The maximum deviation from the ideal spherical surface for the 2-D sine test
occurs at 450 to the test axis and is exactly equal to the worst behavior for
the 1-D test at the same angle. However, for three axes of 2-D tests there are
only eight points where this worst case behavior occurs, while there are eight
lines where the worst case occurs in three axes of 1-D tests.

Plotting the locus of the maximum of these points over all combinations of
direction cosines, one obtains a circle in 2-D (i.e., at full amplitude) or a
circular donut in 3-D as shown in Figure 2. Figure 2 illustrates the amplitude
of the input to a mode from an X-Y, 2-D sine test as a function of direction
assuming the shakers move in a circle (i.e., Ax - AY).

The 2-D test improves the spatial coverage and doubles the test time with no
losses at all. There is still some attenuation in the off axis directions
(i.e., ideally Figure 2 should be a sphere) but it is as good or better than
the conventional three 1-D tests. To keep the fatigue cycle count the same
(e.g., in the test axis directions), it is necessary to halve the test I
duration, since each test is operating in two directions at a time. This test
is the simplest test found to date and has very few drawbacks. This probably
is the test that will ultimately be accepted by the testing community. 3

1-4 i
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Figure 2 2-D Sine Test Modal Input by Direction

The trick used to obtain a circle in the 2-D test is to use both the sine and

the cosine together. These are orthogonal functions and produce 2-D motion.
If only sines or only cosines are used, the motion would be planar, along a

line at an angle to the axes. To do the same thing in three dimensions, one
would need a third function at the same frequency, which is orthogonal to both
the sine and cosine. Since no such function can exist (a result from
orthogonality), it is not possible to produce a 3-D test similar to the 2-D3 test. Some other approach is required.

THE ROTATED CIRCLE SINE TEST

i Sine testing implies a specific I-D waveform. Strictly speaking a sine test
requires a sinusoidal waveform operating at one frequency. However, even in
the conventional I-D test this has been modified. Frequencies are swept
exponentially with a slow sweep rate as illustrated in Equation 2. This
introduces low amplitude harmonics of the fundamental sine frequency, but it
allows continuous frequency coverage.2 When 3-D is introduced into sine
testing, it is also necessary to compromise the waveform to achieve spatial
coverage. The only really good option available for doing this is to

continuously move the direction of shake while the frequency is being swept.

i The problem is deciding what constitutes a sine test. In its purest form, a

sine test is 1-D at one frequency. Since this is impractical, it is necessary

to decide how much to compromise. As a working definition, a test is a sine
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test if 1) the fundamental frequency is about 20 times the fastest subharmonic
and 2) the orthogonal components of the test are modulated sinusoids in
waveform and mapped on the ideal ellipsoidal surface. In the form of
equations, this is as shown below:

3 X - Ax cos 8 sin 4 Where: 0 - wo0t - subharmonic

Y - Ay sin 0 sin 4 4,- ct - fundamental 9)

I Z - Az cos 4

And the requirement that the fundamental is at least 20 times the subharmonics3 is as follows:

w 20 wo 10)

Equation 9 is not nearly as complicated as it may appear. It is just the
familiar transformation between spherical and cartesian coordinates. Because
of the requirement that the sine test must be mapped on an ellipsoid, this is
all the complexity that the assumptions can support.

Figure 3 illustrates the shaker head motion for this system of equations. The
time for the test to repeat in space is given by 1/co which is related to the
fundamental frequency by enforcing equality in Equation 10. As long as the
ratio of the two frequencies is kept fixed, the shaker head motion will move in

i exactly the same trajectory while the frequency is swept.

Assuming that the fundamental is at 10.0 Hz then the subharmonic is at 0.5 Hz
(i.e., 10 Hz/20 - 0.5 Hz). The time to repeat for this waveform is 2.0 seconds
(i.e., period - 1/0.5 Hz - 2.0 seconds). At ten Hertz this is 20 cycles whichII
is adequate compared to the 136 cycles between half power points for Q-20.
Time histories for the motions along the three axes are shown in Figure 4.
Notice that the waveforms in the X and Y directions are modulated sinusoids -
an unavoidable consequence of testing in 3-D. Inspecting the shaker
trajectory, the spatial coverage is dramatically better than could be obtained

with either the conventional or 2-D sine test. The waveform illustrated in
Figures 3 and 4 is one possible solution for the 3-D generic sine test.

Still, this test has a few drawbacks. It spends a larger amount of time
testing the Z axis than the other two axes. In fact, the time history in the Z
direction (Equation 9 with 4 - ct) is a pure sinusoid (i.e., Azcos(wt)). The
other two directions are tested equally, but receive significantly less
attention than the Z axis. Also notice that this test spends too much time at
the poles along the Z axis. Much more time is spent there than at the equator
in the X-Y plane.

I THE TUMBLED CIRCLE TEST

To overcome these problems, it is possible to move the Z axis from Figure 3
slowly in space so the preferential treatment is distributed over space.
.lathcmatically we need to introduce unitary rotations as follows:

I
1-7I
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S10 0
Rx(O) - cos 0 -sin Ux - 0
3x3 0 sin 0 cos 0 3x1 0

co 0 0 -sin 0
R R(0) - 0 1 0 U 1 i
3x3 sin 0 0 cos 3x1 0

cos 80-sin 8 0J
Rz(O) - sin 0 cos 6 0 U z  0

033 0 1]3x i

To obtain a 2-D circle, we simply have to multiply one of the rotations, R, by
U as follows:

[cos wt 0 -sin ot] 0 } = -sin wt

Ry(t)Uz - i f 0 - 12)
3x3 3xl sin wt 0 cos ct I cos t

To upgrade to the rotated circle test, we add another rotation in front of
Equation 12:

coswot -sinwot -sin wt sinwt cosot

Rz(nwt)Ry(wt)Uz sinw0 t coswgt 0 0 -sinwt sinwot 13)
3x3 3x3 3xl1 0 0 i cos ct cost

3 There are some basic requirements on this kind of rotation. If two rotations
in a row occur about the same axis they are equivalent to one rotation with the
sum of the angles (e.g., Rx(8)Rx(O) - Rx(0+0)). Also, if a rotation is about
an axis, it doesn't change that axis's time history at all (e.g., Rx(wt)

doesn't change X(t) at all because of the one in the rotation matrix).
Finally, if you want a left handed rotation, simply change the sign of the
frequency term (e.g., -ct gives counter clockwise rotation). The reason there
is a sign difference between Equation 13 and Equation 9 is that the fundamental
rotation, w, is going in the opposite direction.

3 To achieve the tumbled circle test, we must add two more rotations in the
middle of Equation 13. Two rotations are required instead of just one
rotation because whatever axis we rotate about must not be the same axis as the
previous rotation to avoid summing the angles, and a rotation about either of

the other two axes leaves the axis rotated about undisturbed. Thus the tumbled
circle test is structured as shown in Equation 14 and illustrated in Figure 5:

Rz(wet)Ry(ryt)Rx(rx)Ry(wt)Uz -

3x3 3x3 3x3 3x3 3xl
14)[cos wet -sin ot 01[ Cos Tyt 0 -sin ryt 1l 0 0 ]-sin ot

sin we~t cos woet 0j 0 1 0 J0 Cos Txt -sin rxtJf 0
0 0 1 sin ryt 0 cos ryt 0 sin rxt cos rxt - cos wt

I While this is messy as an expression for a time history, it produces more
satisfactory time histories illustrated in Figure 6. Empirically, the time
histories have more cycles together with significant amplitudes if the higher
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frequencies are to the outside of the rotation (e.g. wo should be higher than
x) Because of the order of the frequencies, the time history shown in Figure
6 has more large cycles together than the time history in Figure 4 for the
rotated sine test. It doesn't seem to make very much difference what sign is
chosen for the rotations, the features of the test move from axis to axis with
sign changes, but the amplitudes are unaffected.

Figure 6 illustrates a test of the form of Equation 14 with w9-1/2 Hz and 3
ry-1/3 Hz and rx-i/6 Hz, with the fundamental, w-10 Hz. The choice of
frequencies to tumble the data at comes from the need to have the waveform
repeat itself after a fairly short period of time. There are two main
advantages to having the waveform repeat itself: 1) the test time history can
be built in frames that have the digitization rate changed and nothing else,
this potentially simplifies the test control system, and 2) with a repeating
waveform it is easy to analyze whether the spatial coverage is adequate. If I
the waveform doesn't repeat, it is necessary to study the entire frequency
range to see if there are gaps in the spatial coverage.

To obtain a waveform that repeats, it is necessary for the three tumble
frequencies, rx-1/6 Hz, y-1/ 3 Hz, and wo-i/2 Hz, to have periods that are
multiples of each other. In the case from Figure 6, all three frequencies
repeat after 6 seconds, rx goes through 1 oscillation, 

-y goes through 2 I
oscillations, and wo goes through 3 oscillations. Of course during a sine
sweep these frequencies would move together. At w-20 Hz the three tumble
frequencies would be: o0-i Hz and ry-2/3 Hz and rx-l/3 Hz. The shaker path I
from Figure 5 remains exactly the same for the entire sweep, only the rate that
it moves around the path changes. For the second set of frequencies at 20 Hz,
the period to repeat is three seconds instead of six seconds. I

FREQUENCY DECOMPOSITION 1
A good intermediate step to understanding the waveforms from these two tests is
to decompose them into individual frequencies. While this is rather tedious in
the case of a complicated waveform like Equation 14, it greatly simplifies I
subsequent calculations since the waveform can be expressed as a sum of sine
waves. To illustrate the procedure consider the rotated circle test:

X(t) - Ax sin wt cos w0t - Ax [ sin(wq+w)t - sin( 9 -w)tj I
Y(t) - Ay sin wt sin wot - Ay [ cos(w0 -w)t - cos(wq+w)t] 15)

Z(t) - A z cos Wt

These results can be summarized in Table 1 below: i

Table I Rotated Circle Frequency Decomposition i

Frequency Hz X Y Z
cos sin cos sin cos sin

W+W6 10.5000 ( 0.000, 0.500) ( 0.500, 0.000) ( 0.000, 0.000)
9.5000 ( 0.000,-0.500) (-0.500, 0.000) ( 0.000, 0.000)

10.0000 ( 0.000, 0.000) ( 0.000, 0.000) ( 1.000, 0.000)

1-10
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Any waveform that is composed of the products of sines and cosines can be
decomposed into sums of sines and/or cosines at frequencies which cover all the
permutations of sums and differences of the original frequencies. Thus X(t)
and Y(t) are expressed in terms of the frequencies (w+wo) and (co-0). The
fundamental only appears as a positive number, while all permutations of the
other frequencies are covered. Also, the frequency of the fundamental, W,3 doesn't appear at all as a single frequency unless some of the sums cancel.

This process is susceptible to computer analysis. The tumbled circle test
decomposition in Table 2 was produced with a computer code that recognizes all

possible combinations of sine and cosine products and knows the decomposition
of all four possible products:

1 sin a sin P - cos(a-f) - cos(a+ )

cos a cos f - cos(a-p) + cos(a+#)
I 16)

sin a cos 0 - sin(a+fi) + sin(a-fl)

cos a sin 6 - sin(a+#) - sin(a-6)

I Table 2 Tumbled Circle Test Frequency Decomposition

Frequency Hz X Y Z
cos sin cos sin cos sin

w+,Ty +O 10.8333 ( 0.000,-0.250) ( 0.250, 0.000) ( 0.000, 0.000)

w+-yrYW 9.8333 ( 0.000,-0.250) (-0.250, 0.000) ( 0.000, 0.000)
Wry '+9 10.1667 ( 0.000,-0.250) ( 0.250, 0.000) ( 0.000, 0.000)
W- y WO 9.1667 ( 0.000,-0.250) (-0.250, 0.000) ( 0.000, 0.000)
+rx+ry +W6 11.0000 ( 0.000,-0.125) ( 0.125, 0.000) ( 0.000, 0.000)

W+Tx+T Y-cO 10.0000 ( 0.000,-0.125) (-0.125, 0.000) ( 0.000, 0.000)

W+rx-ry+we 10.3333 ( 0.000, 0.125) (-0.125, 0.000) ( 0.000, 0.000)
w+rx-ry-WOe 9.3333 ( 0.000, 0.125) ( 0.125, 0.000) ( 0.000, 0.000)
w-rx+y+-CO 10.6667 ( 0.000,-0.125) ( 0.125, 0.000) ( 0.000, 0.000)
W-rx+r Ywe 9.6667 ( 0.000,-0.125) (-0.125, 0.000) ( 0.000, 0,000)
w- x- y+W9 10.0000 ( 0.000, 0.125) (-0.125, 0.000) ( 0.000, 0.000)
W-rx-ry-wO 9.0000 ( 0.000, 0.125) ( 0.125, 0.000) ( 0.000, 0.000)
Y+,x+W9 10.6667 (-0.250, 0.000) ( 0.000,-0.250) ( 0.000, 0.000)
W+Tx-WO 9.6667 ( 0.250, 0.000) ( 0.000,-0.250) ( 0.000, 0.000)
W-rx+O 10.3333 ( 0.250, 0.000) ( 0.000, 0.250) ( 0.000, 0.000)
W-tx-0 9.3333 (-0.250, 0.000) ( 0.000, 0.250) ( 0.000, 0.000)
W+1y 10.3333 ( 0.000, 0.000) ( 0.000, 0.000) ( 0.500, 0.000)
W-r y 9.6667 ( 0.000, 0.000) ( 0.000, 0.000) (-0.500, 0.000)
W+-x+.ry 10.5000 ( 0.000, 0.000) ( 0.000, 0.000) ( 0.250, 0.000)
W+*x- y 9.8333 ( 0.000, 0.000) ( 0.000, 0.000) ( 0.250, 0.000)-rx+- y 10.1667 ( 0.000, 0.000) ( 0.000, 0.000) ( 0.250, 0.000)
W-rx-y 9.5000 ( 0.000, 0.000) ( 0.000, 0.000) ( 0.250, 0.000)!-~
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Structures respond to the harmonic decomposition frequencies just like they
were input as single frequencies. Superposition holds for linear differential
equations, so the response of a structural mode is simply the sum of the
responses to the individual frequencies. This will be made extensive use of
later in the discussion of shock spectra.

The bandwidth associated with the test is easily identified from a frequency
decomposition. Notice that the highest frequency in the table is (W + JWOJ +
irxI + Iryl) - 10 + 1/2 + 1/6 + 1/3 - 11 while the lowest frequency is (w -
Jw9J - rxJ- Iryl) - 10 - 1/2 - 1/6 - 1/3 - 9. The absolute value signs are
necessary because the frequencies can be negative. All the decomposition test
frequencies fall between these two frequencies and these two frequencies are
always present, thus the bandwidth for the rotated sine test is ±iWei - ±.5 Hz
and the tumbled circle test is ±[LwOI+ItxI+Jry] - ±1 Hz. When the bandwidth
gets large compared to ± w - ±.025xi0- ±.25 Hz (the width between half power
points on the mode), the mode tends to produce separate gain spikes for each
side of the test frequencies as will be illustrated next. 5
GAIN SPIKES IN 3-D

The differential equation governing the response of a structural mode is as i
follows (assuming the modes are normalized so the generalized mass is one):

d2 a + 2  + q- 17)
2 ~wndt nq

dt 1Xi Ix1

Assuming the forcing (Fj) is at only one location and is a pure sinusoid, the
term on the right becomes O(Fs sin wt + Fe cos wt), where 0 is the mode shape
value at the point where the force is being applied. This type of assumption
is not at all limiting because Equation 17 is a linear differential equation. 3
Superposition of solutions allows any initial condition problem to be solved
based on this simple solution and a Fourier decomposition of the force time
history. Superposition can extend the solution for as many forcing locations I
and as complicated a time history as are required in the real problem.

We proceed to obtain the steady state solution by assuming the form of solution
is the same as the input. Differentiating and solving for the values of the I
two undetermined constants, S and C:

q - (S sin wt + C cos wt) i

- (wS cos wt - wC sin ct) 18) i

4 - (- 2S sin ct -c 2 C cos ct) 5
d2t

Substituting Equation 18 into the differential equation (Equation 17) gives

Equation 19:

1-12 3
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I
-c2S sin wt - c 2 C cos wt + 2 cn CS cos wt - 2 cnwC sin wt

I + wn2S sin wt + on2 C cos wt - O(Fs sin t + Fc cos t) 19)

Since the sines can not in general be equal to cosines and vica versa:

3 (cn2 - 2 )S - 2  n C - Fs0)

2 cnwS + (cn2 -c2 )C - 0 Fc

3 Solving for S and C:

'OFs 2 2s 2) + OFc2 wn w

(Wn2 _ W 2 ) + (2w nw)2

OF(Wco - W 2 O2 co w 21)

I c n 2 s2-n

(Wn2 _ 2) + (2 w)

3 This messy expression can be simplified somewhat by converting over to
amplitude and phase coordinates. The displacement amplitude of the oscillation
from Equation 18 is, after some algebra, as follows:

S2 + 2F 2+F 22)

(cn2- c2) 2 + (2 wnw)

SNotice that the displacement amplitude of the response depends only on the
amplitude of the input in the numerator of Equation 22. The phase angle of the
input is irrelevant to the response amplitude. The phase angle can be
calculated by forming the ratio of either of the S or C terms from Equation 21
to the overall amplitude from Equation 22. Then the total phase angle, 0, is
as shown in Equation 23:

3 Fs (n 2 
- W2 ) + Fc 2 wn2

sin /3 - 23)

SIFs2+Fc2 j (wn2- c 2 ) 2 + (2 wnw)2

However, we can recognize these terms as the original phase angle of the input

forcing, 0, and the new phase angle relative to the original input, 9. Then

Equation 23 is simply: sin / - sin 0 cos 0 + cos # sin 9; and / - # + 9.

Fs Fc
sin I F cos 0=

Fs2 +Fc2  Fs2+Fc2

s 2n w
C 0 (Wn2  

2 ) 24)

sin 9 - +c'os 8 - co2c) 2
+(cno)

] (wn,2 - )2)2 + (2 ,n )2 I(wn 2 - 2)2 + (2Wnw )2

1-13
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The modal gain is defined as the ratio of the output divided by the input.
Also it is most common to convert the output to acceleration by multiplying by
W2 . Converting to acceleration also changes in the sign of 9 in Equation 24
above because there is a sign change as illustrated in Equation 18.

The gain spike can be made to represent a displacement,-velocity, or
acceleration output by suitable multiplication by the forcing frequency, W. 1
Also, similar derivations can be performed to obtain the gain with respect to a
displacement of the base of the mode, or the application of an acceleration
time history to the base of the mode. For any of these cases, the gain spike I
defined in Equation 25 will be appropriate as long an there is no difference in
the units of the input and the output. To correct for a difference in units
some power of w must be used along with appropriate conversions between lbf and
Ibm, etc. In any event, some modal gain constant (e.g., modal gain constant - I
4inout/GM) needs to be multiplied times the gain spike to produce physical as
opposed to modal outputs. 3

Gain - S2  +c2 W2 W2 25)

0 Fs2+Fc2  I<wn2 w2 )2 + (2 Wnw)n

The modal gain from Equati6n 25 is typically plotted versus forcing frequency 3
(e.g., w) to produce a gain spike for a single sinusoidal input. This same
concept can be used for the more complicated time histories from the various

sine tests already introduced. Given the frequency decomposition for the I
tests, it is easy to sum solutions for the individual sinusoidal components to

.8.
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Figure 7a Steady State Z-Axis Input For The Tumbled Circle Test
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Figure 7b Steady State Z-Axis Response For The Tumbled Circle Test
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get steady state modal acceleration for each of these tests at a fixed modal
frequency (e.g., wn) as a function of the center frequency for the test (e.g.,
w). Since the steady state response frequencies are the same as the forcing
frequencies, the steady state acceleration time history repeats itself in the
same period as the forcing time history.

Figure 7 illustrates this process for the Z axis of the tumbled circle test.
The input time history shown in Figure 7a is converted to a steady state
response time history as shown in Figure 7b. The input time history from
Figure 7a and the output time history from Figure 7b will repeat themselves

endlessly. Notice that the response is at a much higher amplitude than the
input because of the modal gain, 1/2 . Of course the full modal gain of /2
is not achieved for the waveform from Figure 7a since it is not a pure
sinusoid. The gain for this time history is taken as the maximum absolute
value for the entire time history, i.e., the entire output time history is

reported as one maximum number (13.36) at the center frequency of the
excitation (10 Hz in this example). Making other time history plots with
different center frequencies generates the gain spike for the waveform being5 analyzed.

The gain spikes produced in this way appear similar to the conventional 1-D
gain spike though the details of the shape are different. The 2-D sine test
has exactly the same waveform and consequently has the same gain spike as the
conventional 1-D test. Figure 8 compares the conventional sine test (the
circles) to the rotated circle sine test along the three coordinate directions.
The 1-D sinusoidal waveform concentrates all of it's energy at the fundamental
frequency and consequently has the highest gain possible. The Z axis of the
rotated circle sine test is sinusoidal so it has the same gain spike as the
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Figure 8 Rotated Circle Gain Spikes
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I
conventional test. The X and Y axes are different from the Z axis but the X
axis has the same waveform as the Y axis (just shifted in time) so they have
equal, attenuated, gain spikes.

For the tumbled circle test the results are shown in Figure 9. All three axes I
have slightly different gain spikes with significant attenuation compared to 1-
D. The Z axis is slightly higher than the other two, with all three axes
tending to separate into two distinct gain spikes. Many other choices exist I
for test waveforms, however, to date no combinations have been found that 1)
repeat in a short period of time (a maximum of 6 seconds), 2) have equal gain
spikes, and 3) do not separate into two gain spikes. 3

X AXIS Y AXIS z RXIsIVI
6 

65 4

3 _

a 5
4 4
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3 6 3 3 8 3 4 5 6  3 5 1 S 3 I 6 O 2 1
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Figure 9 Tumbled Circle Test Gain Spikes 3
With complicated waveforms, the gain spike tends to separate into two different 3
spikes when the damping is low. Looking at the gain equation, if - )n then the
gain is simply Q-I/2 . In the curves illustrated to date, the damping ([-.025)
was 2.5% critical damping. If the damping is increased to 5% critical damping,
then the gain decreases from 1/(2x.025) - 20 to 1/(2x.05) - 10. At the same
time, the width of the gain spike at it's half power points, ± w, increases
from ±.025xi0-.25 Hz to ±.05xlO-.5 Hz. The separation between the high
frequency e.g., (w+wq) - 10+1/2 - 10.5 Hz and the low frequency e.g., (W-wO) "
10-1/2 - 9.5 Hz, becomes smaller relative to the width of the mode so that the
response is more in one peak. For any test with multiple frequencies there
will always be a damping value small enough that the frequencies will separate U
- this a serious objection to multiple frequency waveforms. Still, even if the
gain spike does separate, the only real consequence is that it is hard to
estimate precisely the frequency associated with a mode. 3
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3 one order. The direction cosine terms (cosx, cosy, and cos-) can multiply
either the input time histories (X(t), Y(t), or Z(t)), or the response time
histories in each axis given by the mode's transfer function operating on the
time history (H(w)X(t), H(w)Y(t), and H(w)Z(t)). Notice that the three steady
state response time histories are responses for three different modes oriented
in different directions.

3 R(t) - cosx H(w) X(t) + Cosy H(w) Y(t) + cosz H(w) Z(t) 26)

5 While Figures 10 and 11 are useful for the purpose of obtaining numbers, they
do not create much understanding of the shape of the gain spike in space. What
is required is a way to plot the same data in three dimensions. This has been
done in the form already shown in Figure 1 for the 1-D sine test modal input,
and in Figure 2 for the 2-D sine test modal input. The same plot routine has
been used to plot the maximum gain (over frequencies) as a function ofI direction for all possible directions. This is shown in Figure 12 for the
rotated circle test. A line drawn from the center of the coordinate system to
the surface of the plot is the steady state amplitude for a mode oriented in

* that direction.

The irregular shape of the surface can be seen to correspond to the bumps in
Figure 10. This result is somewhat disappointing because it has such a large
ratio between the gain at the poles and at the equator. This is the result of
the modulated waveform in the X and Y directions causing less than 1/2 gain at
the equator. Since the Z axis is sinusoidal, the gain is I/2 at the poles.

I Three View Drawing
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The same plot for the tumbled circle test is shown in Figure 13 below. The
more complicated geometry causes bumps and irregularities. This reveals a

weakness in the plot routine in that you can see through the gain plot to the 5
back surface. The plots are not hidden line plots and show both the front and

back surface. The results for the tumbled circle test in Figure 13, while far
from being a sphere, are more regular than the rotated circle test in Figure
14.

Plots for the 1-D test and the 2-D tests are not required since the waveform
for these tests are pure sinusoids. The gain surface is simply Q-I/2 times
the input surface presented earlier as Figure I for the 1-D test and Figure 2
for the 2-D test. In these cases, the gain spike doesn't separate into two
gain spikes, and it is not necessary to obtain the maximum amplitude gain over 3
the range of frequencies. Only one frequency is present in the excitation.

Three View Drawing 2
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Figure 13 Tumbled Circle Spatial Gain

TRANSIENT RESPONSE SHOCK SPECTRA i
Using the frequency decomposition of the various sine tests it is possible to
calculate steady state response of a structural mode to an input time history .
To observe this response it would be necessary to run the excitation at a
constant frequency for a long time until the steady state response was
achieved. This is not the way real sine tests are conducted. As was described
earlier, the conventional sine test is swept at a fixed sweep rate (e.g., 2i
octaves/minute), with a range of test frequencies being swept out (e.g., 5 to
2000 Hz). Thus there is an issue how much the sweep rate will attenuate the I
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3 shock spectra response at a frequency. In other words, how much the response
will be transient in nature as opposed to steady state.

I To answer these types of questions, a slightly different shock spectra routine
is called for. The differential equation from EIuation 20 can be solved
numerically using the recursive filter technique . Using the recursive filter

I technique, the response Y(nT) is estimated in terms of the input X(nT) at
discrete time points as shown in Equation 27 below:

i Y(nT)-boX(nT) + blX((n-l)T) + b2X((n-2)T) - alY((n-l)T) a2Y((n-2)T) 27)

Where:

I n - counts data points

T - the time between samples - l/(digitization rate)

W d - the damped natural frequency - W -

b I e- ewT sin(wAT)
b0 -d T

b -2 le Tsin(wT) - e] WTcos(wdT)
I  L wd T

I 2 wT e- wTsin(!dT)

2 - e -d T

I a - -2e- Tcos(wdT)

-2 2wTi a -e

6.08

I 6!. '166
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Using this type of solution, both the homoger~eous and particular solution to
the differential equation will be obtained. Thus it is possible to analyze
data with a sweep rate; however, it is necessary to start the process in some U
realistic way. For this analysis, the recursion relationship was started at
steady state (from the gain spike discussion) and run through a modal frequency
which was held constant. Starting at steady state is reasonable because
typical test techniques use a dwell to get up to level before sweeping. Figure
14a illustrates the input time history data for the Z axis of the rotated
circle sine test (i.e., a conventional swept sine). Notice that the input
frequency is being swept so that there is a higher frequency at later times.
The response in Figure 14b shows a typical bloom that looks exactly like a
modal gain spike from a conventional test. This very normal looking gain
spike is the reason shock spectra is so widely used - it analyzes the
phenomenon that actually happens in a real swept sine test.

Figure 14b produces a single shock spectra number equal to the maximum 5
amplitude of the absolute value of the response over the entire time history
(e.g., a gain of 18.0 for the case shown: 2 oct/min sweep rate with the mode at
10 H). This should be compared to the steady state gain of 20. The 3
difference is the attenuation of the amplitude due to the sweep rate. Of
course this is for a conventional sine test. The result varies by sweep rate,
frequency of the mode, the assumed damping value, and procedure for
initializing the data.

Figure 15a and 15b illustrate the same type of data for the Z axis of the
tumbled circle test. Notice the swept waveform for the input in Figure 15a. I
The period decreases as time increases but the waveform looks exactly the same.

Also notice the tendency of the response to separate into two peaks. This is
result of the gain spikes separating into two spikes as discussed in the 3
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I" section on 3-D gain spikes. The shock spectra result from Figure 15b is a
single number, the maximum absolute value for the entire plot (14.37 over all
frequencies). This number should be compared to the steady state result from
the gain spike calculation of the same waveform in Figure 8 (13.36 at 10 Hz).
For slow sweep rates they are very close.

3 The issue is how much attenuation there will be in the steady state signal as a
function of sweep rate. By repeating the calculation on the rotated circle
sine test for different sweep rates, the results in Figure 16 were generated.
Clearly much more attenuation with amplitude occurs in the modulated waveforms
from the X and Y axes than in the conventional swept sine test in the Z
direction. However, more of the attenuation is associated with the waveform
than the sweep rate for reasonable sweep rates. This is because the reason
sweep rate attenuates the amplitude is that it limits the number of cycles the
mode experiences at the correct frequency. The modulated waveform also limits
the number of consecutive cycles at the mode's natural frequency by 1) limiting
the amplitude and 2) by changing the phase. Since the modulated waveform tends
to be more limiting at low sweep rates, the system tends to exhibit little
additional sweep rate attenuation.

I While the attenuation of modal gain may seem disturbing at first, it is not all
bad. The most serious objection to sine testing is that the waveform almost
never occurs in the real world, and real world waveforms exhibit substantially
less gain that the sine wave. The modulated sine waveform is far closer to a
rocket staging transient waveform than a pure sinusoid would be. The sine
environment is unique in that of all possible waveforms, it has the highest
modal gain that can ever be achieved. These modulated waveform sine tests also
have a high modal gain, just not as high as the conventional sine test.

MODE AT 10 HZ MODE AT 50 HZ

,I.g SPATIAL MAXIMUM

4.

U SPTA SPATIAL MINIMUM

I I t I . II, II.

SWEEP RATE (OCT/MIN) SWEEP RATE (OCT/MIN)

3 Figure 16 Rotated Circle Gain Versus Sweep Rate

The corresponding data for the tumbled circle test is shown in Figure 17.
Again for low sweep rates the further attenuation with sweep rate is small.
Notice that the characteristics of the three axes are much closer together with
the tumbled circle test than the rotated circle sine test. This leads one to
expect that the attenuation with sweep rate is fairly uniform spatially.
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Figure 17 Tumbled Circle Test Gain Versus Sweep Rate I

Of course this spatial distribution of the sweep rate effects are calculable I
just as the spatial distribution of the steady state gain was calculated.
Superposition again is the key to calculating the shock spectra gain spatially.
Three response time histories in the X, Y, and Z directions are calculated

independently. Then direction cosines are applied to the time histories to
calculate a new response time history in the direction of the direction
cosines. Doing this over all directions results in a plot of the form shown
in Figure 18 for the rotated circle test.
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I Figure 18 is comparable to Figure 12 showing the steady state for the same test
and conditions. The lumpiness of the surface is the result of the precise
timing of the waveform and mode. The gain is largest in the direction that the
rotating circle is moving just as the mode's frequency is reached. This
depends on the choice of frequency at T-0.0 of the start of the test and the
exact mechanics for generating the swept sinusoid. It turns out that there is
a problem with using Equation 2 (w(t) below) for the test frequency. For short
periods of time it produces very adequate results, however when the time, t,
gets long the effects of sweep rate and time get mixed up. Consider the5 derivative of the argument with time:

d -... d (ln 2/60)nt t

- ol (ln 2/60)nt (ln 2/60)nt 28)
wo0(ln 2/60)n e t +w

The first term in the expansion is an error term that grows with time. The
second term is the swept frequency being sought. For the data shown here, the
times and frequencies at the axes crossings were calculated and the frequency
was linearly interpolated between axis crossings. The exact method of
overcoming this problem will influence the shape of the gain in Figure 18.

To the extent that the gain in Figure 18 is different than the gain in Figure
12, the difference should be viewed as an error (that could occur any place
spatially) caused by the sweep rate. As the frequency of the mode gets higher
the size of the error gets smaller at given sweep rate. For test articles that
exhibit modes in the 100 Hz region with sweep rates in the 1 to 2 oct/min
range, this error is very small.
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The corresponding data for the tumbled circle test is shown in Figure 19. The
same lumpiness is evident though it was also present in Figure 13 for the
steady state data. Notice that the data is considerably more uniform for the
tumbled circle case than for the rotated circle case. I
3-D FATIGUE CYCLE COUNTING U
Another use for a sine test besides enveloping the transient response of a
shock spectra, is the application of a fixed number of cycles to test for
potential fatigue failures. It is in this application that the 3-D test I
probably is most significant. The conventional three 1-D tests are very
deficient in applying cycles to modes that are not oriented along the test
axes. 3
Typically Miner's hypothesis is used to count cycles for estimating fatigue
damage. Miner's hypothesis is that the damage caused by a cycle of oscillation
accumulates linearly. If a test item can experience 1000 cycles at a level, 5
then the damage caused by just one cycle will by 1/1000 of the total fatigue
life of the item. Usually this is applied as a log-log SN curve, showing the
stress (S) level versus the cycles (N) required to fail the specimen at that 3
stress level. In the case of sine testing, it is necessary to use acceleration
instead of stress to stay within the framework already presented. Equation 29
was adopted to represent the attenuation ratio of the fatigue cycle counts
between the 1-D and the 3-D tests.

4

Z0.5(ABS(peak))6.5
Fatigue Ratio - 29)

l-D SUM

The factor of 0.5 in the numerator reflects that peak values were estimated 3
every half cycle.

It is possible to count either the input cycles or the shock spectra response 3
cycles. For sine testing, it is far more meaningful to count the shock spectra U
response cycles since it indicates how a structural mode would really respond
to this input. The normalizing factor used was the shock spectra for a
conventional 1-D sine test in the test direction.

The analysis can be run on a conventional I-D test by direction and this is
shown in Figure 20. Along the Z axis in the test direction, the result is a 5
ratio of 1 (by definition), however, away from the test direction the results U
are very poor. The conventional test has a major weakness in that it doesn't
put very many cycles on a mode oriented at an angle to the test direction. The 3
data shown is for -2.5% and f-10 Hz with a 2 oct/min sweep rate, however, the 3
situation does not completely correct itself at higher frequencies. The reason
there is so much attenuation is the power the peak value is raised to (i.e.,
the equivalent of the slope of the SN curve) in Equation 29. It dramaticall
accentuates any irregularity in the peak amplitudes.

1
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The 2-D sine test shown in Figure 21 dramatically improves the situation. It
should be kept in mind that both of these tests are run in three separate axes,
thus there are two other pairs of figures just like the ones shown except
oriented along the X and along the Y axes. The problem is the space left over 3
between these figures. Any mode with an orientation such that it points along
empty space, is essentially untested. There clearly are such directions in
either the 1-D or even the 2-D case. i

Three View Drawing

1.5. - 1 .' 3m
1.608

4.540

8-..56

"" 1., o aII . 50. II . III. IIa. 543

.1 0 I
1.10

-'..5. I. OiI
-l.11

-I.II I
. .. . ~ I . . . I . . . I , , I , I . . . I d  m , I. . . .I. . , , 1 . ,

5. -1.oo -o.5 o.6e 2.56o 1.8o 1.36."?r. sell. .uoo.S k. ooI.5o

Figure 22 Rotated Circle Fatigue Cycle Surface U

Because of the nature of the 3-D test, it seems reasonable that a 3-D waveform 3
would correct these problems. Thus it is disappointing to see the result for
the rotated circle test shown in Figure 22. The fact that the Z axis is a 1-D
sine test dominates the picture. Figure 22 is almost exactly the same as 3
Figure 20 for the l-D sine test except that there is a slight fattening around -
the X-Y plane and the surface is tilted slightly on it's axis. The cycle count
for the sine wave is so much higher than the cycle count for the modulated
sinusoids that they are almost negligible. The slight off centered appearance 3
of the data is caused by the lumpiness in the gain spikes due to the exact
timing of the shock spectra response. This has been exaggerated because of
being raised to the power 6.5 and has become a major feature of the curve. i
There are fatigue cycles associated with the modulated sinusoids, they just
don't add up to the same order magnitude of damage as in the sinusoid.
Counting input cycles produces a more spherical shape. The results are
consistent with the ratio of the polar to equatorial gains from Figure 8. The

I
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3" polar gain was 20 while the equiatorial gain was 12.6 thus (12.6/20)6.5 - .05,
clearly the power 6.5 exaggerates any amplitude error.

3 Given this situation, it is not surprising that the tumbled circle test also is
not very spherical. Figure 23 illustrates the same data for the tumbled circle
test. While there is a factor of 2.5 between the two axes, it should be noted3 that this is an error of 1.156.5 If the off axis irregularity were felt to be
a problem the amplitude in the off axis directions could be raised by 1.15
times to compensate for the distortion. SN curve data is typically shown in
log-log form hiding the extreme variability of the data. A factor of three is
probably as close as we will be able to come.

Of more concern is the factor of 2 between the conventional sine test cycle
count and the tumbled sine test cycle count. This suggests that the test
duration would have to be increased by a factor of 2 to achieve the same cycle

count. Alternatively the amplitude of all three axes could be raised by 1.11
i to keep the cycle count the same.
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Figure 23 Tumbled Circle Fatigue Cycle Surface

I As a practical matter, cycle counting is done using log cycle counts and these
corrections are actually smaller than the uncertainty associated with the cycle
count total that the test is designed to achieve. It probably accomplishes
nothing to make the corrections other than take account the factor of two in
duration between the two tests.
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CONCLUSIONS

While the rotated circle and tumbled circle waveforms appear promising, on 3
closer inspection using shock spectra and fatigue cycle counting, they still
exhibit serious tendencies to have a preferred direction. There are a number
of major obstacles to a 3-D sine test: 3
1. It is necessary to pick the modulation frequencies low enough that the

bandwidth of the resulting test is small compared the half power points of 3
the typical structural mode being excited. The test bandwidth is plus or 5
minus the sum of the modulation frequencies and thus is proportional to the
center frequency value. The half power points on the structural mode are at
± w and thus are also proportional to the center frequency value. There is 3
loss of gain, fatigue cycles, etc. from this source at allfrequencies. The
error is not a function of the test frequency.

2. The separation of the test frequency into a set of frequencies above the I
nominal frequency and below the nominal frequency means that the gain spike
can separate into two separate peaks. Since the half power points of the
gain spike occur at ± w, there is always a damping values, , small enough 3
that the gain spike will separate.

3. The smaller the modulation frequencies are, the longer the time to repeat
becomes. The time for the waveform to repeat is equal to the smallest i
integer number of periods for all the modulation frequencies. Since the
period is the inverse of the frequency, the smaller the frequencies are, the
longer the period to repeat becomes. If the period to repeat gets long
compared to the width of a mode, ± w, complete spatial coverage will not be
available. Again this error source does not depend on the test frequency.
Both the period and width of the mode change equally with the test 3
frequency.

4. Sweep rate effects limit the test performance at low frequencies. With an 3
exponential sweep rate, each cycle is a fixed frequency width wide, i.e., I
Aw/cycle - n (ln 2/60), depending only on the sweep rate, n, independent of
frequency. When the frequency gets high, ± w has more cycles of oscillation 3
in it than when the frequency is low. Thus at low frequencies or high sweep
rates there commonly are not enough cycles in the width of the mode to
achieve steady state response.

5. The slope of the acceleration versus cycle to failure curve distorts any
irregularity in the spatial gain to cause preferred directions in 3-D tests.
While it is easy to move the preferred direction between axes, it is not
very easy to get rid of the preferred directions.

A procedure to improve the tumbled sine test spatial coverage would be to
perform three axes of the tumbled circle sine test, interchanging the roles of 3
the X, Y, and Z axes. By doing different sweeps with different orientations
(just as we do now with the conventional test), it is possible improve the 3-D
coverage dramatically. 3
Still, in our pursuit of a 3-D answer to sine testing we should not overlook
the elegant 2-D answer provided by testing in circles. The 2-D test (in three 3
orthogonal directions) offers substantial improvement over the conventional 1-D
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test in shock spectra response, fatigue cycle count, frequency content, and
sweep rate attenuation. There is no down side to this test - thus it should be
fairly easy to adopt as a standard. Potentially, even the rather limited input
at 450 to all the axes can be overcome by testing in eight coordinate
directions instead of four coordinate directions. The 2-D test appears to be

I the test with a future.
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CHAPTER 2 DISTRIBUTION THEORY IN 3-D RANDOM TESTING

INTRODUCTION

Traditional I-D random testing uses a normal distribution clipped at 3 sigma
as the underlying distribution behind the test. The mean of the normal
distribution must be zero because the shaker system has limited travel. The

standard deviation (sigma) is the wideband RMS of the test power spectral
density (PSD). This has evolved as a standard for testing in the aerospace
industry and elsewhere. With the advent of 3-D random testing, the
statistical assumptions this test is based on need to be reexamined in light
of the new test regime.

3-D random testing is implemented by using a clipped normal distribution on 5
each axis. As will be demonstrated, this produces a major difference from
the I-D test in that the resultant vector is distributed chi-squared with
degrees of freedom 3 instead of being normally distributed. Compared to the

I-D test, clipping at 3 sigma on the resultant vector produces far to much
clipping because of differences between the distribution functions. In the

3-D test, clipping at 3 sigma will produce 2.9% of the points being clipped

as opposed to 0.27% of the points for a 1-D test. Clipping at 3.76 sigma is 3
called for if the resultant vector is to be clipped the same percentage of
the time as in 1-D testing.

Of more concern, clipping can not currently be implemented on the resultant
vector. All three shaker inputs are clipped individually, without regard to
the value of the other inputs. This produces a box shaped region in which

the shake table moves. Because the vector components are clipped normal I
distributions, finite probabilities occur of reaching the extreme corners of
the box. Even when clipped the corners of the box are fairly far out at 5.2

sigma, and the probability of reaching them is fairly low (6.9 hours between
events). This raises the spector of experiencing hard tests and easy tests
within the same test specification depending on how high the peak amplitude
gets during the course of the test. I
This document will demonstrate these statistical results starting from the
basics and working through the results quoted above. The conventional

distributional theory is entirely drawn from Chapter 26, "Probability
Functions" from Handbook of Mathematical Functions edited by Milton
Abramowitz and Irene A. Stegun, first published in 1965 by Dover

Publications, Inc., New York.1 Of course words and interpretation have been I
added to the mathematical formulas in the Handbook. The work with clipped
chi-squared distributions is believed to be original. All tables were
calculated using an HP28C programmable pocket calculator which has both

normal and chi-squared functions built into the calculator.

THE GAUSSIAN OR NORMAL DISTRIBUTION i
The general form of the normal distribution is given by Equation 1 below.
It is characterized by two parameters: the mean, p, and the standard

deviation, a. Additionally, there is the value of the variable, x, often
called the random deviate, whose probability is to be estimated. In the
form shown in Equation i, the probability is the ratio of the time that a 3
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sample drawn at random from a normal distribution with mean, p, and standard
deviation, a, will have a value less than or equal to x.

P(xjj,a) - 1 (t ) 21(2a2 )dt )

E Since the normal distribution is a distribution, the expression approaches
one as the value of x approaches -. Actually that is how the normalizing
factor a,1/ is arrived at. The integral part of the expression with x-W
approaches a,/ so dividing by that amount causes the overall expression to
approach one. As with virtually all distributions, evaluation of the actual
integral as a function of x is impossible, so tabulations are all that can

I be achie-ed.

Aside from integrating to one, the integral of a distribution mustU monotonically increase from zero at the lower limit of the range to a value
of one at the upper limit of the range. This is because probabilities can
only be positive. If the value of the integrand ever became negative, there
would be a region where the probability would be negative and this doesn'tU make physical sense. There is, of course, no requirement that the range of
a distribution be infinite.

U Equation 2 gives the normalized integrand of Equation I. This is
illustrated in Figure I as the familiar bell shaped curve associated with
the normal distribution. The probability calculated in Equation 1 is

i illustrated in Figure 1 as the cross hatched area of the curve. Equation I
is sometimes referred to a the cumulative normal distribution.

Z(xA,a) - 1 e " ( x ' P ) 2 /(2 a ) 2),I
Z(xlp,a)

II

x-p-3o x-p-2a x-.-a x-p x-p+a x-p+2a x-i+3a

3 Figure 1 Integrand of the Normal Distribution

Different probabilities can be calculated by changing the limits of
I integration. In particular, the probability that a sample drawn at random
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III

from a normal distribution with mean, p, and standard deviation, a, will
have a value greater than or equal to x is given by Equation 3:i_ I -e(tM)2/(2a 2 )d 3)

Q(xl'a) - 1 t' - 1 - P(xtM,a) 3)

Notice that there is no problem with using equality in both directions in
Equation 3 (i.e., P(Xxxlu,a) while Q(X>xlj,a)), since there is no
probability associated with the occurrence that X-x. In general, the
probability of observing a value between any two numbers x I and x2 is given
by Equation 4 (xl:x2):

A(xlx 2l#,a) 1 f2_ (t-A) 2/(2a2 )dt 4)
7r 

5

This form of the normal equation is very difficult to tabulate since it
involves so many variables: xl, x2 , A, and a. Some simplification is
achieved by tabulating either Equation 1 or Equation 3 since all three
equations can be expressed in terms of any of the tabulations as shown
below:

A(xl,x2 lP,a) - P(x2 lA,a) - P(xllA,a) 5) 3
A(xx 2 l,'a) - Q(xllpa) - Q(x2 lAa)

Q(xjA,a) - 1 - P(xl,a)

Q(xl,a) - A(x,-IA,a)-5

P(xWoa) - 1 - Q(xlAa)

P(xjp,a) - A(-,xl,a) 3
Even in the simplest of these forms, there are three variables: x, A, and a.
It is prohibitively difficult to tabulate the normal distribution in this
way. Luckily, there is a way to simplify the expression through a change of
variables to produce the standard normal distribution. I
THE STANDARD NORMAL DISTRIBUTION

If the variable of integration in Equation 1 is changed from t to r - (t- 3
A)/a, the three parameter normal distribution becomes a one parameter
standard normal distribution in terms of X where X-(x-p)/a.

i 1 r2/2drP(X) - 27 e 6)

This is the distribution that is universally tabulated as the normal
distribution in terms of the parameter, X-(x-p)/a. Some tables give the
lower tail of the distribution as shown in Equation 6, and some tables give 3
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the upper tail of the distribution, Q(X), as shown below.

i i xe -rQ2/2drQ(x) 7)

i Another possibility that is sometimes tabulated is the center part of the
distribution with the tails excluded. This commonly is the probability thatE is desired. For example to determine the probability of observing an event
less likely than 3a, events with -3<_<3 have to be considered. To deal with
these questions Equation 8 is often tabulated.

2

A(X) - 1 e r dr 8)
-X

Finally, tables sometimes tabulate R(X)-l-A(X) to estimate the probability
of being in one of the tails of the distribution. The three main versions
of the standard normal tables are interrelated as indicated below. The last
three expressions are based on the fact that the normal distribution is
symmetric.

P(X) + Q(X) - 1 9)

P(-X) - Q(X)

3 A(X) -2 P(X) - 1

A(X) - - 2 Q(X)

Table 1 tabulates P(X), Q(X), A(X), R(X) and the normalized integrand of the
standard normal distribution, Z(X), over a very wide range of X.l
THE SPHERICAL NORMAL DISTRIBUTION

I The standard normal distribution is expressed in only one dimension, X.
Three axis testing requires a distribution that is multi-dimensional with
each dimension being normal. This is a spherical normal distribution, and

n it is the simplest form of a trivariate normal distribution. Since the next
step will be to transform the spherical normal distribution into a chi-
squared distribution, it will be advantageous to write the symmetric form of

i the spherical normal distribution similar to distribution A(X) above.

e" (x 2+y +z )/2dx dy dz 10)S(X,Y,Z) - 7 JJ1-zy --

This can be transformed into the chi-squared distribution by simply
i converting into spherical coordinates and integrating out the two angles.

First it is necessary to set X-Y-Z so the distribution is spherically
symmetric. In practice this is not a serious limitation since one can

i stretch or contract one axis or another by changing its local value of RMS
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Table I The Standard Normal Distribution

X P(X) or 0(-X) Q(X) or P(-X) A(X) R(X) Z(X) or Z(-X)
0.0 0.500000000 0.500000000 0.000000000 1.000000000 0.398942280
0.1 0.539827837 0.460172163 0.079655675 0.920344325 0.396952547
0.2 0.579259709 0.420740291 0.158519419 0.841480581 0.391042694
0.3 0.617911422 0.382088578 0.235822844 0.764177156 0.381387815 i
0.4 0.655421742 0.344578258 0,310843483 0,689156517 0.368270140
0.5 0.691462461 0.308537539 0.382924923 0.617075077 0.352065327
0.6 0.725746882 0.274253118 0.451493765 0.548506236 0.333224603
0.7 0.758036348 0.241963652 0.516072696 0.483927304 0.312253933
0.8 0.788144601 0.211855399 0.576289203 0.423710797 0.289691553
0.9 0.815939875 0,184060125 0,631879749 0.368120251 0.266085250
1.0 0.841344746 0.158655254 0.682689492 0.317310508 0.241970725
1.1 0.864333939 0.135666061 0.728667878 0.271332122 0.217852177
1.2 0.884930330 0.115069670 0.769860660 0.230139340 0.194186055
1.3 0.903199515 0.096800485 0.806399031 0.193600969 0.171368592 5
1.4 0,.919243341 0,080756659 0.838486682 0,161513318 0.149727466
1.5 0.933192799 0.066807201 0.866385597 0.133614403 0.129517596
1.6 0.945200708 0.054799292 0.890401417 0.109598583 0.110920835
1.7 0.955434537 0.044565463 0.910869074 0.089130926 0.094049077
1.8 0.964069681 0.035930319 0.928139362 0.071860638 0.078950158
1.9 0,971283440 0,028716560 0.942566880 0.057433120 0.065615815
2.0 0.977249868 0.022750132 0.954499736 0.045500264 0.053990967
2.1 0.982135579 0.017864421 0.964271159 0.035728841 0.043983596
2.2 0.986096552 0.013903448 0.972193105 0.027806895 0.0354745q3
2.3 0.989275890 0.010724110 0.978551780 0.021448220 0.028327038
2.4 0.991802464 0.008197536 0.983604928 0.016395072 0.022394530
2.5 0.993790335 0.006209665 0.987580669 0.012419331 0.017528300
2.6 0.995338812 0.004661188 0.990677624 0.009322376 0.013582969
2.7 0.996533026 0.003466974 0.993066052 0.006933948 0.010420935
2.8 0.997444870 0.002555130 0.994889739 0.005110261 0.007915452
2.9 0.998134187 0.001865813 0,996268373 0.003731627 0.005952532
3.0 0.998650102 0.001349898 0.997300204 0.002699796 0.004431848 I
3.1 0.999032397 0.000967603 0.998064794 0.001935206 0.003266819
3.2 0.999312862 0.000687138 0.998625724 0.001374276 0.002384088
3.3 0.999516576 0.000483424 0.999033152 0.000966848 0.001722569
3.4 0,999663071 0.000336929 0,999326141 0.000673859 0.001038281
3.5 0.999767371 0.000232629 0.999534742 0.000465258 0.000872683
3.6 0.999840891 0.000159109 0.999681783 0.000318217 0.000611902
3.7 0.999892200 0.000107800 0.999784401 0.000215599 0.000424780 I
3.8 0.999927652 0.000072348 0.999855304 0.000144696 0.000291947
3.9 0,999951904 0.000048096 0.999903807 0,000096193 0.000198655
4.0 0.999968329 0.000031671 0.999936658 0.000063342 0.000133830 5
4.1 0.999979342 0.000020658 0.999958685 0.000041315 0.000089262
4.2 0.999986654 0.000013346 0.999973309 0.000026691 0.000058943
4.3 0.999991460 0.000008540 0.999982920 0.000017080 0.000038535
4.4 0,999994587 0,000005413 0,999989175 0,000010825 0.000024942
4.5 0.999996602 0.000003398 0.999993205 0.000006795 0.000015984
4.6 0.999997888 0.000002112 0.999995775 0.000004225 0.000010141
4.7 0.999998699 0.000001301 0.999997398 0.000002602 0.000006370 i
4.8 0.999999207 0.000000793 0.999998413 0.000001587 0.000003961
4.9 0.999999521 0.000000479 0.999999042 0.000000958 0.000002439
5.0 0.999999713 0.000000287 0.999999427 0.000000573 0.000001487 3
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Table 1 The Standard Normal Distribution, Continued

3 OM(X R(X Z(X)
0.0 5.000XlO-I 1.000x100  3.989xI101

1.0 1.587X10-1 3.173x10'l 2.420x10'1I 2.0 2.275X10-2  4.550x10-2  5.399x10-2

3.0 1.350x10-3  2.700x10-3  4.432x10-3

4.0 3.167X10-5  6.334X10-5  1.338x10-4I 5.0 2.867X10-7 5. 733x10-7  1.487x10-6

6.0 9.866X10-1 0  1.973x10-9  6.076xlO09

7.0 1.280x10'12  2.560x10'12  9.135x10'12I 8.0 6.221X10-1 6  1.244x10'15  5.052X10-15

9.0 1.129x10'19  2.257xl10'9  1.028x10-18

10.0 7.620xI10 24  1.524X10-2 3  7.695X10-2 3

15.0 3.671X105 '1 7.342xl105' 5.531x10-50U 20.0 2.754X10-89  5.507xl10 89  5.521xl10 88

25.0 3.057X10'13 8  6.113X10'13 8  7.654x10-1 3 7

30.0 4.907x10'19 8  9.813x10-1 9 8  1.474X10-1 9 6I 35.0 1.125X10-268  2.250X10-268  3.940x10-267

40.0 3.656xl103 5 0  7.312X10-3 5 0  1.463X10-3 4 8

45.0 1.676x10-4 4 2  3.352x10-4 4 2  7.547X10-4 4 1

50.0 1.081X10-5 4 5  2.161x10-5 4 5  5.405X10-54 4

I Notes:

I x - (-Al

7 2"

Z(X) I 1~r e X/

3P(X) JX0 Z(r) dr

A (X) J Z(r) dr

x

I P(X) - 1 - Q(X) - [A(X) + 11/2 -1 - R(X)/2

EQ(X) - 1 - P(X) - [I - A(X)1/2 - R(X)/2

M(X) - 1. - R(X) - 2 P(X) - 1 - 1 - 2 Q(X)

I R(X) - 1 - A(X) - 2 - 2 P(X) - 2 Q(X)
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(i.e., sigma). Since X, Y, and Z are scaled by the value of a, this doesn't i
create much of a limitation. Then, the area element for a sphere is (r2

sin$ dr dO do) replacing (dx dy dz) and x2+y 2+z2 - r2 . The two integrals
with respect to angles simply cover the total solid angle of a sphere, thus
the two outermost integrals give a value of 4r. At this point the result is
the integral shown in Equation 11:

S(X) - 11) r e dr

Making the further substitution that r2-t, thus 2rdr - dt, and also using
x2-X2 , gives the conventional form of the chi-squared distribution for
degrees of freedom equal to three as shown in Equation 12:

x 2

S - 'I 1 t e-t/ 2dt 12)

THE CHI-SQUARED DISTRIBUTION 3
If Xl, X2, ..., Xv are independent random variables distributed according to
the standard normal distribution, then: 3

v
x2  xi 2  13)

follows the chi-square distribution with v degrees of freedom and the
probability that X2 < X2 is given by P(X21v). Since the chi-square
distribution is squared, it only runs from 0 to -.

In general, the chi-squared distribution is given as shown in Equation 14
below:

x 
2

P(X2jv) - [2v/2r(v/2)] 1 J xhv  e-X/ 2dx 14) 3
0

For the case of a 1-D test where v-l, the chi-square distribution and the
normal distribution are essentially the same. As long as the square of the

standard deviation is used to look up the results and the region the
probability is for is correctly handled (i.e., A(X) must be used), the
numbers will be the same from either a chi-square with v-1 or normal I
distribution table.

However, if more than 1-D is involved, the distribution function associated
with the magnitude of the displacement vector is the chi-squared (X2 ) I
distribution with the number of degrees of freedom equal to the number of
test dimensions. This is for uncorrelated cases only (i.e., so the
distribution functions are independent). Differences between the normal
distribution and the chi-squared distribution are striking for test
dimensions higher than 1-D as illustrated in Table 2.

2-7
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Table 2 Chi-Squared Probabilities

S0 -1 - 2 2 -3 3 - c Total
Sigma Sigma Sigma Sigma

S2<1 I<X2<4 4:X2<9 9:5x2<, Total DistributionI fNormal or
1-D 68.2 27.2 4.3 0.3 100. P(x2 v-l)

I 2-D 39.3 47.1 12.4 1.1 100. P(X21v-2)

I3-D 19.9 54.0 23.2 2.9 100. P(X21v-3)

Typically tables of the chi-squared distribution are organized somewhatI differently than tables of the normal distribution. Tables of the chi-
squared distribution are usually used for significance testing and the issue
is to determine what value of the random deviate, X, is associated with the
"confidence level," P(X21v) for a two tailed test, given the number of
observations in the table, v. The chi-square distribution is also capable
of being tabulated in the same form as the standard normal distribution.
This has been done in Table 3.

I To calculate the results in Table 2 use Table 3. For example consider the
case of the 2-D test between 1-2 sigma. From Table 3 look up X2 - 12 - 1

I for v-2 under P(X 21v-2). This number is 0.39347. Similarly, look up X2 _
22 - 4 for v-2. This number is 0.86466. Then the integral from 0 to la -
.39347 while the integral from 0 to 2a - .86466 and the integral from la to
2a - .86466 - .39347 - .47119 as shown in Table 2 above.

If there is correlation between the random variates it is necessary to
switch to the statistics of a more general form of the bivariate normal (forU 2-D) or trivariate normal (for 3-D). This is considerably more complicated.

I CLIPPING THE RESULTANT VECTOR

Clipping is necessary to constrain the infinite domain of the chi-squared
distribution to a region that the shaker can operate in. If the shaker
travel is too extreme, the shaker will hit mechanical stops that limit the
travel. This causes unacceptable, out of specification, high frequency
input that potentially can destroy the test article. The mechanical stopsU are required to keep the shaker system together. The shaker would fall
apart without them.

I In a 1-D test system, the clipping is traditionally set to limit the maximum
response level in the test to three sigma (3a). Since the mean of the test
input is zero, this is equivalent to clipping the signal at three times the
wideband root mean squared (RMS) amplitude. This is clear from Equation 15

I for the RMS amplitude and Equation 16 for the standard deviation of a
signal.

I
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I
Table 3 The Chi-squared Distribution i

x2  P(X2[v-I) Q(x2 ,v-l) P(x2 1v-2) Q(x2 1v-2) P(x2 1v-3) Q(x2 v-3)
0.001 0.02522712 0.97477288 0.00049988 0.99950012 0.00000841 0.99999159
0.002 0.03567059 0.96432941 0.00099950 0.99900050 0.00002377 0.99997623
0.003 0.04368010 0.95631990 0.00149888 0.99850112 0.00004366 0.99995634
0.004 0.05042903 0.94957097 0.00199800 0.99800200 0.00006720 0.99993280
0.005 0.05637198 0.94362802 0.00249688 0.99750312 0.00009389 0.99990611
0.006 0.06174212 0.93825788 0.00299550 0.99700450 0.00012339 0.99987661
0.007 0.06667801 0.93332199 0.00349388 0.99650612 0.00015544 0.99984456
0.008 0.07126993 0.92873007 0.00399201 0.99600799 0.00018985 0.99981015
0.009 0.07558059 0.92441941 0.00448989 0.99551011 0.00022647 0.99977353

0.010 0.07965567 0.92034433 0.00498752 0.99501248 0.00026517 0.99973483
0.020 0.11246292 0.88753708 0.00995017 0.99004983 0.00074776 0.99925224
0.030 0.13750977 0.86249023 0.01488806 0.98511194 0.00136961 0.99863039
0.040 0.15851942 0.84148058 0.01980133 0.98019867 0.00210234 0.99789766
0.050 0.17693673 0.82306327 0.02469009 0.97530991 0.00292933 0.99707067
0.060 0.19350406 0.80649594 0.02955447 0.97044553 0.00383921 0.99616079
0.070 0.20866322 0.79133678 0.03439458 0.96560542 0.00482352 0.99517648
0.080 0.22270259 0.77729741 0.03921056 0.96078944 0.00587563 0.99412437
0.090 0.23582284 0.76417716 0.04400252 0.95599748 0.00699016 0.99300984

0.100 0.24817037 0.75182963 0.04877058 0.95122942 0.00816258 0.99183742
0.200 0.34527915 0.65472085 0.09516258 0.90483742 0.02241070 0.97758930
0.300 0.41611758 0.58388242 0.13929202 0.86070798 0.03997152 0.96002848

0.400 0.47291074 0.52708926 0.18126925 0.81873075 0.05975751 0.94024243
0.500 0.52049988 0.47950012 0.22119922 0.77880078 0.08110859 0.91889141
0.600 0.56142197 0.43857803 0.25918178 0.74081822 0.10356763 0.89643237
0.700 0.59721631 0.40278369 0.29531191 0.70468809 0.12679605 0.87320395
0.800 0.62890663 0.37109337 0.32967995 0.67032005 0.15053297 0.84946703
0.900 0.65721829 0.34278171 0.36237185 0.63762815 0.17457219 0.82542781

1.000 0.68268949 0.31731051 0.39346934 0.60653066 0.19874804 0.80125196
2.000 0.84270079 0.15729921 0.63212056 0.36787944 0.42759330 0.57240670 3
3.000 0.91673548 0.08326452 0.77686984 0.22313016 0.60837482 0.39162518
4.000 0.95449974 0.04550026 0.86466472 0.13533528 0.73853587 0.26146413
5.000 0.97465268 0.02534732 0.91791500 0.08208500 0.82820286 0.17179714
6.000 0.98569412 0.01430588 0.95021293 0.04978707 0.88838977 0.11161023
7.000 0.99184903 0.00815097 0.96980262 0.03019738 0.92810223 0.07189777
8.000 0.99532227 0.00467773 0.98168436 0.01831564 0.95398829 0.04601171
9.000 0.99730020 0.00269980 0.98889100 0.01110900 0.97070911 0.02929089

10.00 0.99843460 0.00156540 0.99326205 0.00673795 0.98143386 0.01856614
20.00 0.99999226 0.00000774 0.99995460 0.00004540 0.99983026 0.00016974
30.00 0.99999996 4.320xi0 8 0.99999969 3.059x10 7 0.99999862 1.380xi0 6

40.00 1.00000000 2.54xi0 "I0 1.00000000 2.061xlO 9 0.99999999 1.066xi0 8

50.00 1.00000000 1.54x10 12 1.00000000 1.39xi0" I 1.00000000 7.99x10 "1I

60.00 1.00000000 9.49xi0 15 1.00000000 9.36xi0 1 4 1.00000000 5.88x10 1 3

70.00 1.00000000 5.93x10 17 1.00000000 6.31x.O1 6 1.00000000 4.27x10 1 5

80.00 1.00000000 3.74x10 1 9 1.00000000 4.25xi0 1 8 1.00000000 3.07xlO 1 7

90.00 1.00000000 2.38xi0 2 1 1.00000000 2.86xi0 2 0 1.00000000 2.19x10 1 9

100.0 1.00000000 1.52x10 2 3 1.00000000 1.93x10 2 2  1.00000000 1.55x10 2 1
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I. n 2

RMS i-1i 15)
n

n 2

a - i 16)
3 n-1

Clearly there is very little difference between the two definitions if the
mean is zero, x-O. The factor used to normalize is slightly different, n
instead of n-l. Other than that, the two equations are identical.

In the 3-D test the corresponding clipping would be ellipsoidal along the
I constant wideband RMS amplitude surfaces for the test. While this is not

the way that 3-D test systems currently clip, this is the preferred clipping
technique and hopefully will become available some day. This approach isi preferred because of the spatial uniformity of the resulting peak amplitudes
and more uniform test statistics. Even when clipping on the resultant
vector, the chi-squared statistics of the resultant vector dictates a
different clipping limit than the traditional 3a. Consider for example the

I following table for the chi-squared distribution:

Table 4 Extrema of the Chi-Squared Distribution

2 Probability of Exceeding 
X2

a X 1-D 2-D 3-D
(v-l) (v-2) (v-3)

3.0 9.00 0.002700 0.011109 0.029291

3.1 9.61 0.001935 0.008189 0.022189
3.2 10.24 0.001374 0.005876 0.016632

3.3 10.89 0.000967 0.004318 0.012336
3.4 11.56 0.000674 0.003089 0.009059
3.5 12.25 0.000465 0.002187 0.006574
3.6 12.96 0.000318 0.001534 0.004724
3.7 13.69 0.000216 0.001065 0.003359
3.8 14.44 0.000145 0.000732 0.002363

,915,21 0,000096 0,000498 0,001646

4 16.00 0.000063 0.000335 0.001134

From Table 4 above, clipping at 3a for a 1-D test results in a probabilityI of clipping of 0.00270 or .27% of the time. To put this into perspective,
suppose the control system is operating to 800 Hz with a sampling rate of
2048 samples/second. This produces on average 2048x.00270 - 5.5296 clips

I per second. Every test has a great many clipped inputs.

In the case of the 2-D test, clipping at 3a will result in a probability of
clipping of 0.011109 or 1.1109% of the time. Using the same situation as

I above, this produces 2048x0.011109 - 22.7512 clips per second. To achieve
the same rate of clipping as in the I-D test, it is necessary to clip at
3.44a.

E Considering the 3-D test, clipping at 3a produces a probability of clipping
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I
of 0.029291 or 2.9291% of the time. This produces 2048x0.029291- 59.9880
clips per second - more than 10 times the 1-D clipping rate. In the 3-D
test it is necessary to clip at 3.76a in order to achieve the same clipping
rate as in the 1-D test. i

Too high a clipping rate will have a detrimental affect on the control loop
since the signal will be reduced without any corresponding correction to the
equalization. The system will increase the test amplitude to make up for I
this unexpected loss of signal. As long as the loss is very small, nothing
significant happens; however, if clipping occurs too often the system can
potentially become uncontrollable. 3
IMPLEMENTATION OF CLIPPING ON THE RESULTANT VECTOR 5
Typical current test control systems clip their output signal at an
empirical value just before sending the signal to the power amplifier.
Because of the central limit theorem, clipping tends to be somewhat
empirical. In this context the central limit theorem says that any I
distribution will approach a normal distribution after a sufficiently large
number of mathematical operations are performed on it. The clipped time
history is operated upon by the physical amplifier and shakers, tending to I
return the distribution to a normal distribution, undoing the clipping. For
this reason it is necessary to correlate the achieved level of clipping to
the empirical level the signal was actually clipped at.

To clip based on the resultant vector, it would be necessary to calculate it
- a step not currently taken. All three frames of data (X(t), Y(t), and
Z(t)) would have to be available in one place to estimate the resultant: I
R(t) 2 - X(t)2 + Y(t)2 + Z(t) 2 . Then the resultant would need to be compared
to X2 . If R(to)2 > X2 the ratio X/R(to) would need to be multiplied 3
individually times X(to), Y(to), and Z(to) to produce the clipped signal in
each axis respectively. All three inputs would need to be cut back
proportionally to produce clipping that does not change the distribution of
data spatially. In floating point this calculation is fairly slow and I
current systems do not clip this way. Instead, the individual components
are clipped to a prescribed level without reference to the other component
amplitudes. This is done by simply replacing values exceeding X with the
value X and values less than -X with the value -X.

While it is desirable to clip on the resultant vector, the advantages of 3-D
testing are sufficient that it is not essential. Clipping on the individual
components have an array of unfortunate side effects which will be discussed
in detail in the following paragraphs. In the real world, inputs are also
limited to some maximum upper bound, however, experience suggests that a
factor of 3 between the RMS and the peak amplitude is far to small a number.
In the transportation vibration environment, a factor of ten is more
typical. Of course the distribution function is also not normal to observe
values that high in practice. The probability of exceeding a 10a value for
a normal distribution is 1-A(1O.) - 1.523971xi0 "2 3 . It is reassuring to
realize that the clipping issue is of the same order of magnitude as the
issue of the correct distribution function.

2-11 i
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I Figure 2 Regions of the Clipped 2-D Distribution

I CLIPPING THE COMPONENT AMPLITUDES

I Current control systems clip the individual shaker amplitudes instead of the
composite resultant vector. Each shaker is limited to a range from -3a to
+3a on a side. As has already been demonstrated, this is equivalent to -

3xRMS to +3xRNS. Unfortunately this geometry results in the shaker being
constrained to a region which is box shaped instead of the ellipsoidal
shaped region which is desired. The probability space is distorted by the
clipping to have 100% of the probability associated with the space inside

I the box. Detailed calculation of the clipped probability density function
in three dimensions has proved difficult to date. However the calculation
in 2-D has been done and is outlined below:I
THE 2-D CLIPPED DISTRIBUTION FUNCTION

I Calculating how the clipping will affect the distribution function is an
exercise in plane geometry. Figure 2 illustrates the basic regions of the
test and the icons in the margin indicate which region is currently being
discussed.

2-12I
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In the region where no clipping takes place I
(e.g., below 3a), the distribution is chi-squared
with degrees of freedom equal to two (because it is
2-D). The chi-squared distribution has already been I
discussed and the result is indicated below:

To get the probability between two values 3
(e.g., la to 2a) for degrees of freedom equal to
two, this is simply:

P(l 2X 2 212) - ex/2dx - e'1 2  - 4 /2  471195 17)

This is a remarkably simple case for integrating a probability density
function. It can be done in closed form! Notice that the multiplier on the
exponential is -1/2. Thus the order of integration effectively changes and
the 1/2 in front of the integral is cancelled.

--Referring to Figure 2, this is the appropriate I
-calculation where no clipping is involved. In
Figure 2, this is the region of concentric circle*
inside the box. The box represents the value at I
which the clipping takes place (3a in Figure 2).

The region outside the box is that part of the
distribution where the signal would have exceeded I
the clipping limit. In these regions outside the
box, all the probability to infinity will show up at
a value defined by the unclipped shaker's signal.
If the unclipped shaker is putting out Ya (where

-3Y:53) and the clipped shaker is putting out 3a. Then the resultant will
be as follows:

R - (32+y 2 ) a 18)

Since Y is 1-D and normally distributed, the resultant in this region will 3
be normally distributed and the probability of both clipping and observing
greater than or equal to Ya on the other axis is just:

P - N(X _3a)xN(Y _Ya) 19) I
To calculate a category, e.g., 3.2o to 3.4a, first calculate how large a
value of Y will produce a resultant in the correct range. Looking back at I
Equation 18 for the resultant, set R equal to 3.2 and calculate Y:

Y - (3.22 - 32)1 a -a.iio to produce a clipped resultant of 3.2 c 20) 3
Y - (3.42 - 32)1 a -l.6a to produce a clipped resultant of 3.4 a

Then the probability that-the result is between 3.2,a and 3.4a is given by 3
the following:

2-13 I
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N(X>3a)x[N(Y l.lla) - N(Y>l.6a)] 21)

0.001349898x[.1327355 - .05479929] - .0001052060

From Figure 2 there are eight of these regions. Thus the probability from
all eight of these regions is .000841648 since they are all equal.

Next there is the circular arcs inside the box
to be calculated. In this region the distribution
is chi-squared with 2 degrees of freedom. Since the

- -data is uniformly distributed with respect to the
-angular position, it is sufficient to calculate what
part of the circle is included as a function of the
radius. A little geometry produces the result that
the arc length in radians is as shown below:

TArc length - 4(r/2 - 2 cos- (3/R)) 22)

To chec this resu t, suppose R-3J2 so there is no arc left. Then the
argument of the arc cosine goes to J2/2 and the arc cosine becomes w/4.
This produces the correct result: zero.

Dividing by 27 to produce a ratio, the integral that needs to be evaluated
is simply:

r3.42
P(3.22<X2<3.4212) - I [1- - cos"(-3)] e -x/2 23)

P2 3 .2 2 dx 3

The square root of x is required in the argument of the arc cosine because
the integrand is the square of the resultant amplitude instead of the
resultant amplitude itself.

U Evaluating this integral numerically, gives .001340544 for the probability
associated with the curved areas from Figure 2. Adding this result to the
one calculated earlier gives: .001340544 + .000841648 - .002182192 for the
total probability associated with the region 3.2a to 3.4a.

This leaves the square boxes on the outside
corners of the box to be calculated. This is the

---easiest of the regions to calculate since both
shakers are clipped in this region. Thus the
probability of being in this region is simply the
product of two normal distributions as shown in

- Equation 24.

P - N(X _3)XN(Y _3) 24)

0.0013498982 - .00000182222

There are four of these regions so the total probability associated with
them is 0.00000728889, and since both signals are clipped they show up as a
lump of probability at 3 a.

I
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Table 5 2-D Box Clipping

Clipping at 2.0 a 2.2 a 2.4 a 2.6 a 2.8 a

I

0.0-0.2 a .019801327 .019801327 .019801327 .019801327 .019801327
0.2-0.4 a .057082327 .057082327 .057082327 .057082327 .057082327
0.4-0.6 a .087846135 .087846135 .087846135 .087846135 .087846135 I
0.6-0.8 a .109121174 .109121174 .109121174 .109121174 .109121174

0.8-1.0 a .119618377 .119618377 .119618377 .119618377 .119618377
1.0-1.2 a .119778404 .119778404 .119778404 .119778404 .119778404
1.2-1.4 a .111441157 .111441157 .111441157 .111441157 .111441157
1.4-1.6 a .097273798 .097273798 .097273798 .097273798 .097273798
1.6-1.8 a .080138601 .080138601 .080138601 .080138601 .080138601
1.8-2.0 a .062563416 .062563416 .062563416 .062563416 .062563416
2.0-2.2 a .088054994 .046413666 .046413666 .046413666 .046413666
2.2-2.4 a .027451718 .058447651 .032786855 .032786855 .032786855
2.4-2.6 a .012139578 .017937057 .037281284 .022087308 .022087308
2.6-2.8 a .005195305 .007710651 .011258562 .022852604 .014206360
2.8-3.0 a .000423414 .003218127 .004704815 .006786431 .013461444
3.0-3.2 a .000834908 .001914330 .002756253 .003927661
3.2-3.4 a .000706974 .001092659 .001549731
3.4-3.6 a .000402907 .000598102
3.6-3.8 o .000069694 .000216099
3.8-4.0 a .000061943

Maximum 2.82843 a 3.11127 a 3.39411 a 3.67696 a 3.95980 a
Prob .002070274 .000773223 .000268798 .000086907 .000026115

1.000000000 1.000000000 1.000000000 1.000000000 1.000000000

I
U
U
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I Table 5 2-D Box Clipping, Continued

U
I Clipping at 3.0 a 3.2 a 3.4 a 3.6 a 3.8 a

0.0-0.2 a .019801327 .019801327 .019801327 .019801327 .019801327
0.2-0.4 a .057082327 .057082327 .057082327 .057082327 .057082327
0.4-0.6 a .087846135 .087846135 .087846135 .087846135 .087846135
0.6-0.8 a .109121174 .109121174 .109121174 .109121174 .109121174

I 0.8-1.0 a .119618377 .119618377 .119618377 .119618377 .119618377
1.0-1.2 a .119778404 .119778404 .119778404 .119778404 .119778404
1.2-1.4 a .111441157 .111441157 .111441157 .111441157 .111441157
1.4-1.6 a .097273798 .097273798 .097273798 .097273798 .097273798
1.6-1.8 a .080138601 .080138601 .080138601 .080138601 .080138601
1.8-2.0 a .062563416 .062563416 .062563416 .062563416 .062563416
2.0-2.2 a .046413666 .046413666 .046413666 .046413666 .046413666

I 2.2-2.4 a .032786855 .032786855 .032786855 .032786855 .032786855
2.4-2.6 a .022087308 .022087308 .022087308 .022087308 .022087308
2.6-2.8 a .014206360 .014206360 .014206360 .014206360 .014206360

I 2.8-3.0 a .008732098 .008732098 .008732098 .008732098 .008732098
3.0-3.2 a .007619716 .005132974 .005132974 .005132974 .005132974
3.2-3.4 a .002182192 .004144318 .002887307 .002887307 .002887307
13,4-3.6 a 000836076 .001163781 .002165758 .001554905 .001554905
3.6-3.8 a .000313871 .000432733 .000595715 .001087392 .000802008
3.8-4.0 a .000110912 .000157886 .000214853 .000292669 .000524518
4.0-4.2 a .000035600 .000054471 .000076124 .000102328 .000138000

I 4.2-4.4 a .000003341 .000017242 .000025602 .000035180 .000046750
4.4-4.6 a .000003702 .000007964 .000011517 .000015584
4.6-4.8 a .000002204 .000003511 .000004960

I 4.8-5.0 a .000000040 .000000966 .000001478
5.0-5.2 a .000000146 .000000402
5.2-5.4 a .000000090

I aximum 4.24264 a 4.52548 a 4.80833 a 5.09117 a 5.37401 a
Prob .000007289 .000001889 ,000000454 .000000101 .000000021

1 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000

U
I
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Table 5 summarize the results in 2-D. The table shows the theoretical I
probability of observing data in categories of 0.2a increments. For
example, if the clipping is set up at 3.Oa (across the top of the chart in
the "Clipping at" row), the probability of observing data between 3.2a and I
3.4a is .002182192 to nine decimal places. Of course, the reason data is
observed above 3.Oa where the clipping was implemented is because the
clipping is box shaped.

Notice that there is a line across the data at 3.Oa in the 3.Oa clipping
column. This is the amplitude where the clipping starts to influence the
table. Above the line, all the columns in the table have the same values. I
The constant data is determined from a chi-squared distribution of degrees
of freedom 2 (since this is a 2-D test). Below the line, the data is partly
determined from the chi-squared distribution of degrees of freedom 2 (in the
diagonals of the box where the amplitude isn't clipped) and is partly
determined from the normal distribution when the amplitude is clipped.

Finally, there is a fixed probability associated with the 3.0xF where both I
shakers are clipping the signal. The value of 3.0xI2a is given in the
column labelled "Maximum" (i.e., 4.24264a in this case) and the value of the
probability associated with this value is given in the column labelled I
"Prob" (i.e., .000007289a). Finally the sum of all the probabilities adds
up to one (to nine decimal places) in the column below all the data.

The very last category in most cases will not be easily distinguished from I
the lump of data when both shakers are clipping. In the 3.0 a clipping
case, the category 4.2 a up to 4.2426 a is listed as a separate entity and
has a probability of .000003341. It will be very difficult to distinguish
these numbers from the data at 4.2426 a, and it would be easiest to look for
the data in the last two categories added together (i.e., .000003341 +
.000007289 - .000010630 between 4.2a and 4.4a).

This "least likely" category gives an easy way to estimate how long the data
will need to be averaged to verify the numbers in Table 5. For example,
consider data limited to 800 Hz. There would be 2048 samples/second. This
is calculated as the power of two above Nyquist folding at 2x800 Hz. The
power of two is used because it is required for the fast Fourier transform
algorithm used in the control system. For I minute, this would be 2048x60 =
122,880 samples/minute. If the "least likely" probability is .000010630
then this implies .000010630x122880 - 1.306 extreme data points per minute.
To get a repeatable num-,r it takes at least 20 data points, so 20/1.306 - I
15.311 minutes of data need to be taken to demonstrate this probability.

Of course numerous numerical problems might occur if one took too much data.
For typical floating point, single precision numbers, errors will result if
more than 223 - 8,388,608 samples (8388608/122880 - 68.2 minutes at 2048
samples/second) are used. If the person coding the computer was sensitive
to this issue the number of samples can be kept in integer form and be U
accurate to 21 - 2,147,483,648 samples (12.1 days of data). Even better,

if double precision is used the number of samples would typically be
accurate to 247 - 1.407x1014 samples (2179.0 years of data).

I
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I" THE 3-D CLIPPED DISTRIBUTION FUNCTION
* While the corresponding calculation for the 3-D clipped distribution

function is difficult, some of the more important results are easy to
calculate. The clipping constrains the shaker to a box shaped region around
the center point of the shake table. The edges of the box are at +3a to -3a
or as shown earlier at +3xRMS to -3xRMS if the clipping is implemented at
3a. The corners of the box are 3/a or 5.19615a away. The probability of
exceeding 5.19615a in 1-D is 1.017277xi0 "7 so it is reasonable that a

I location this far off nominal will cause problems with obtaining a
repeatable peak response amplitude for a random test implemented with this
kind of clipping.

I Since this value is observed whenever the unclipped drive signals to all
three shakers individually exceed 3a, the probability is simply given by [I-
N(-3-< 3)] 3 or 1.96785xi0 -8. This calculation assumes that the response of
the shakers is uncorrelated. If the shaker signals were correlated (as
opposed to having individual frequencies that are coherent), then a much
more difficult calculation would need to be performed using the trivariate

I normal distribution.

A probability this low causes repeatability problems with the peak amplitude
i of the test specification. Suppose the system were set up to control to 800

Hz. The sampling rate would be the first power of two to exceed the
frequency required by Nyquist folding at 2x800 samples/second. This gives a
sampling rate of 2024 samples/second. The expected time between peak

I responses is given by 2024x3600xl.96785x10- 8 - .1433857 extreme data points
per hour. This is 1/.1433857 - 6.974195 hours between extreme data points.
For typical test times in minutes (not hours) the observed peak value will

I vary significantly from test to test.

If the peak amplitude must be more repeatable, the only parameter available
to reduce the probability of hitting the corner is the level at which the
clipping is implemented. Table 6 illustrates the same results derived above
for a variety of levels of clipping.

I In Table 6 the left most column (labelled "Clipping Sigma") indicates the
level that the shakers are set to clip at. The next column is the
probability that a 3-D point (composed of three random numbers) will be

i clipped. This column is labelled "Prob of Clipping" and is calculated as
one minus the probability that all three shakers will not be clipped (i.e.,
1 - N(-c5_XYc)3 where c stands for the clipping level). For example, with
clipping set at 2a, 1 - .95443 - 13% of the data points will be clipped.

I This is a very high rate that might reasonably be expected to cause problems
with the test control system since the RMS amplitude and frequency
distribution of the input will very likely be affected. To translate this

I result into more physical units, the clipping probability has been
multiplied times the digitization rate (assumed to be 2048 samples/second)
in the third column labelled "Clipping Times/Sec."

I The column labelled "Sigma to Corner" is simply the square root of three
times the clipping level. This indicates how many sigma away the corner of
the clipping box is located at.
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Table 6 3-D Clipping Rate Versus Frequency of Hitting the Corner

Clipping Prob of Clipping Sigma to Prob of Corner
Sigma Clipping Times/Sec Corner Hit Corner Times/Hour I
2.00 .1303842 267.03 3.46 .000094198 694.50

2.10 .1034025 211.77 3.64 .000045610 336.27
2.20 .0811225 166.14 3.81 .000021501 158.52
2.30 .0629744 128.97 3.98 .000009867 72.746
2.40 .0483832 99.09 4.16 .000004407 32.492
2.50 .0367972 75.36 4.33 .000001916 14.123
2.60 .0277072 56.74 4.50 .000000810 5.9733
2.70 .0206579 42.31 4.68 .000000333 2.4580
2.80 .0152526 31.24 4.85 .000000133 .98392
2.90 .0111532 22.84 5.02 .000000052 .38311 I
3.00 .0080775 16.54 5.20 .000000020 .14509
3.10 .0057944 11.87 5.37 .000000007 .05343
3.20 .0041172 8.43 5.54 .000000003 .01914
3.30 .0028977 5.93 5.72 .000000001 .00666
3.40 .0020202 4.14 5.89 .000000000 .00226
3.50 .0013951 2.86 6.06 .000000000 .00074
3.60 .0009543 1.95 6.24 .000000000 .00024 I
3.70 .0006467 1.32 6.41 .000000000 .00007
3.80 .0004340 0.89 6.58 .000000000 .00002
3.90 .0002886 0.59 6.75 .000000000 .00001 I
4.00 .0001900 0.39 6.93 .000000000 .00000

Finally the probability of all three shakers being clipped at exactly the
same time is calculated in the column labelled "Prob of Hit Corner." The
way that the extreme corner of the box is reached is for all three shakers
to be clipped at one time. This is just [1 - N(-c5<-c)] 3 . In the case of
clipping at 2a this probability is [1-.9544]3 - .0094%. To put this into
more physical units, this probability is multiplied by the sampling rate in Isamples/hour (2048X3600) to give 694.5 corner hits per hour as indicated in

the column labelled "Corner Times/Hour."

The results in Table 6 indicate the degree of difficulty faced in trying to
increase the probability of hitting the corner by decreasing the level
clipping is implemented at. At 3a IOOxO.0080775 - 0.8% of the vectors are
clipped and the corner is hit on average once every 1/.14509 - 6.9 hours.
To get the average rate of hitting the corner down to 10 min (i.e., I
60/5.9733) the clipping has to be increased to 2.6a and 100x.0277072 - 2.7%
of the vectors are clipped. This is a dangerously high clipping rate
considering that the control system will be trying to undo the affects of
the clipping. To decrease the average rate of hitting the corner down to 5
seconds (i.e., 3600/694.5) the clipping rate has to be increase to
100x.1303842 - 13% of the vectors. This much clipping may cause an out of
specification condition on wideband RMS assuming the test is required to be
±10%.

By way of comparison, in a I-D test clipping at 3a the rate at which the I
most extreme number is reached is 0.0026997x2024 - 5.52918 hits/second or on
average 1/5.52918 - .2 seconds between hits (compared to 6.9 hours for 3-D
at 3a). The rate at which numbers are clipped is OOxO.0026997 - 0.3% of
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the numbers (compared to 0.8% for 3-D at 3a). There is absolutely no wayrn that the l-D numbers can be matched using the existing 3-D clipping
procedures.

I RANDOM VIBRATION TEST SPECIFICATION FOR CLIPPING

One way out of the box shaped clipping problem is to write the specification
n in such a way that box shaped clipping is allowed. Current test

specifications typically address the clipping as shown below:

"The test input shall be Gaussian distributed noise,
shaped in the frequency domain per the test specifica-
tion from the previous section, and clipped at 3 sigma."

I The simplest way of dealing with the box shaped clipping is to say something
like the following:

"The spatial components of the input shall be Gaussian
distributed noise shaped in the frequency domain per the
specification from the previous section, and clipped at

3 sigma. This produces a resultant vector which is
distributed chi-squared and clipped at 3 sigma in the
shaker directions and up to 5.2 sigma along the diagon-
als from the shaker directions."

B In both cases there needs to be a tolerance statement stating that the peak
amplitude for clipping is known ±10%.

EIIf the customer objects to the high peak amplitude that may occur during the
test it can be reduced by reducing the clipping level from 3a to some other
level such as 2.6a based on Table 6. However this should not be a problemE very often. In the real world, peak to RMS ratios as high as 10 are
observed. There is nothing magic about the 3a level that is in common
practice for 1-D. It just produces a very good probability of clipping: lowI enough that it doesn't interfere with the test control system and high
enough that clipping happens continuously thus creating a well defined
maximum amplitude. Unfortunately there is no corresponding good level when
the components (as opposed to the resultant vector) are clipped. If the
resultant vector were clipped at 3.67a it would result in the same
probability of clipping as 3a in the I-D test.

I 14ORE ADVANCED DISTRIBUTION FUNCTIONS

E So far the normal distribution has been transformed into the standard normal
distribution. The standard normal distribution was introduced in three
Cartesian directions to get the spherical normal distribution. The
spherical normal distribution was transformed into spherical coordinates to
get the chi-squared distribution. Clipping was introduced into the chi-
squared distribution to get the chi-squared distribution clipped on the
resultant vector. Also clipping on the Cartesian components of theE spherical distribution was introduced to get the 2-D and 3-D box clipped
distributions.
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Perhaps the ultimate distribution along these lines is the bivariate normal
in 2-D or the trivariate normal in 3-D. These are distributions that allow
correlation between the axes. For example, the bivariate normal is given by $
Equation 25:

1 KX f e.(x22xy+y2)/(l_,2)i

L(X,Ylp) - 11_, 2_ e )dy dx 25)

The correlation coefficient, p, allows the two axes to be interrelated in
any way that can be specified through the use of a covariance matrix. More
generally, the multivariate normal (including the trivariate normal) can be
specified as shown in Equation 26 from Principles of Econometrics by H.
Theil, page 67.2

P(<X>l[V]) - n/2 e Xl "<x'>vl dxl.dxn 26)

lxn nxn (2r) IVI J _ -00

Where: - <x-i>'v (x-p) is a rather long algebraic expression
lxn nxn nxl

IVI stands for the determinant of the covariance matrix.

In practice, the standard methods for specifying random tests will almost
always result in very nearly spherical normal distributions without any
correlation between axes. This is partly a consequence of the central limit
theorem, i.e., given a sufficient number of mathematical operations
performed on the distribution any distribution will approximate a normal I
distribution. Using standard test methods there is no way to interrelate
different frequencies in a deterministic way. Even if multiple axes are
interrelated at a frequency through coherence, unless the same kinds of
interrelationships are present in a lot of frequencies, the net effect is
normal because of the central limit theorem.

As long as at least six spectral lines are at the maximum amplitude for a
given test specification and the coherence is not uniformly high, the
distribution is assured of being very nearly spherical normal. A procedure
very much like root mean squaring together six spectral lines is in common
practice for generating normally distributed random deviates. In the random
number generator the numbers are uniformly distributed instead of being a
sinusoid. Even when there is only one spectral line, this produces
sinusoids that stop and restart at each frame boundary with a new random
starting phase angle. A sinusoid all alone isn't too bad of an
approximation for a normal distribution in the central part of the
distribution. Of course anything beyond T/a simply isn't there for a single I
sinusoid, 100% of the probability happens between -.12a to 1-a.

High coherence can cause the observed test distribution to be trivariate
normal instead of spherical normal. This is important because it helps
explain why tests that reproduce measured data can sometimes produce
failures when tests that envelope the environment don't. In the trivariate
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i" normal distribution, a disproportionate amount of the test can be oriented
in any arbitrary direction. The spatial distribution of the probability
does not have to be uniform. As will be shown in the next Chapter,
correlation between axes produce ellipsoidal RMS surfaces that can be
arbitrarily oriented with respect to the test axes.i
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CHAPTER 3 COVARIANCE THEORY IN 3-D

INTRODUCTION a
In the previous chapter, distribution theory ended with the trivariate
normal distribution expressed in terms of the covariance matrix. In this
chapter the covariance matrix is discussed giving relationships governing

the RMS and principal directions of the RMS surface. This is in
preparation for considering the more complicated (but very similar)
spectral matrix. With the exception of the section on physically
realizable correlation coefficients which appears to be original, the 1
material presented here is very standard and is the basis of factor

analysis in statistics. I
BASIC DATA

Suppose a set of n data points in three orthogonal directions were I
available as illustrated below, i.e., the control accelerometers:

_ n
<x> - <xl,x2,X 3 . xn> where: x - xi/n - 0
lxn i-l

n

<Y> - <Yl,Y2,Y3, ... Yn> where: y - Z yi/n - 0 1)
lxn i-l

n
<z> - <Zl,z 2 ,Z3, ... Zn> where: z - zi/n = 0
lxn i-i

More concisely, represent the data as the matrix IX]:

[x1 yl Z1]
x2 Y2 z2

[X] - x3 Y3 z3  where: [X']Il)/n - (0) 2)
nx3 : 3xn nxl 3xl

Lxn Yn zn.

(1) is a column vector of ones
(0) is a column vector of zero
[X'] indicates transpose of [X]

Note, there are no restrictions of any kind on the points comprising [X], U
except the constraint imposed physically by the shaker used to excite the
motion - i.e., the data must not translate. The mathematics still holds
without this constraint but the subsequent definitions must take into U
account the mean if it is not zero.

In particular, no assumption is required that the data is uniformly 3
distributed random noise. It could just as well be sampled data from a
sinusoid. Actually none of the results presented for the covariance matrix
depend on any distributional assumption. At this point the data doesn't

even have to come from a time series or be in any particular order. It is I
only necessary to keep <x,y,z> sets together. So xI must be associated
with yl and zl, but which data set comes first does not matter.
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I THE VECTOR METHOD OF DEMONSTRATING THE RMS SURFACE

The simplest method of measuring the RMS surface in any direction is to
estimate the time history in the appropriate direction from the three
control accelerometer signals. If one views the output of the control
accelerometers as a continuous representation of the components of the
instantaneous acceleration vector for the table, it is easy to estimate theI rigid body acceleration in any direction by simply taking the vector
components. For example, suppose the instantaneous acceleration time
histories were represented by digital vectors sampled at some sampling

I interval as in Equation i.

To estimate the time history along a vector through a point at (1,2,3) from
i (0,0,0 simply compute the direction cosines. The length of the vector is

R2 - I + 2 + 32 - 14. Thus the time history in that direction is just:

R(t) - (1/,4) X(t) + (2/ -1) Y(t) + (3/,4) Z(t) 3)

I It is possible to compute the RMS of this time history and find the peak
amplitudes.

To demonstrate that this works, it is necessary to measure a fourth

accelerometer's time history and compare it to the computed value from the
formula above. Errors will be introduced by this procedure primarily from
three sources: 1) unless sample and hold techniques are used, the
digitization will introduce slight time lags between the component time
histories, 2) analog accelerometer scale factors are only accurate to one
or two decimal places, and finally, 3) it is difficult to orient an

accelerometer arbitrarily in space.

In doing this it is easiest to estimate the direction cosines after the
fact to minimize the effects of these error sources. In general, the

signal in any direction can be estimated by a least squares curvefit given
the time history for the inputs from Equation 2 and the time history for
the response, R, and nxl vector of measured response values. The least

squares curvefit for the direction cosines is:

(cos) - [[X]'[X]]I [X]'(R) 4)
3xl 3xn nx3 3xn nxl

Then these "cosine" values can be used to predict future signals very
accurately by using the first value in place of i/-14 above, and so on. If

this result doesn't produce numbers within about 10% of the theoretical
direction cosines, there is probably a problem with the set up. If signs
are wrong, there is a sign inversion in the accelerometer cabling or

amplifiers. If the amplitude of the direction cosines is wrong, the gain

of one of the amplifiers is wrong.

I1
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DEFINITION OF THE COVARIANCE MATRIX n

The covariance matrix estimates the amount of variation in the x, y, and z
components of matrix [XI. It is a generalization of the concept of the
root mean squared (RMS) amplitude of a signal. Since it has Leen assumed
that there is zero mean, the covariance matrix for the components of the
signal is defined as shown in Equation 5: 1

n n n
X xixi/n xiyi/n X xizi/n
i-I i-i i-l

n n n
[VI - I yixi/n Z yiyi/n Z yizi/n 5) 3
3x3 i-i i-i i-I

n n n
zixi/n Z ziyi/n Z zizi/n i

i-i i-i i-I

Other equivalent notations representing the covariance matrix are as shown 3
below:

[V] - [V x Vxyy Vxz] - [X'][X]/n 6)

3x3 1Vzx V 3xn nx3
zxVzy Vzz]

From the definitions in Equation 5 above, the following relationship is

obvious, proving that the covariance matrix is symmetric. U
n n

Vxy - X xiyi/n - X yixi/n - Vyx 7)

i-l i-l

The covariance matrix is a corollary of the spectral matrix (used in a

random test specification) without shifting into the frequency domain. The
covariance matrix is simpler to understand than the spectral matrix and the
results generally carry forward. Also, the covariance matrix comes up

regularly in statistics so its properties are very well known. Both the I
covariance matrix and the spectral matrix are actually tensor quantities
(since they rotate like tensors and have principal values) so there is no
vector of values that multiply the matrix on the right. Instead the

covariance and spectral matrices as defined here represent the state of
vibration at a point in space. The matrices are to a tensor, like a single

number is to a scalar, or component values are to a vector.

In other cases of the covariance matrix, the normalizing factor (i.e., 1/n)
varies depending on what the covariance matrix represents. To keep things

simple, a slightly biased estimate of the variance has been used here.

Most commonly it is i/(n-l).l For example, in the statistical procedure *1
"regression" the unnormalized covariance matrix is inverted as part of the

solution. Much of what follows is based on the statistical procedure 3
3-3
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I" "factor analysis" which proceeds from the correlation matrix through an
eigen vector transformation to principal components.

RMS VALUES AND THE CORRELATION MATRIX

I From the definitions for the diagonal terms in Equation 5, it is clear that
the RMS value of response in each direction is simply the square root of
the corresponding diagonal "variance" term.

n
RMSx - I xixi/n - f 8)5 i-i

The correlation coefficient is a number between -1 and 1 indicating the*
degree of correlation between the data sets. It is generally defined as
follows:

n
E xiYii-i Vxy Vxy

Pxy - Y X 9)
n n iv7 RMSX RMSy

[ xixi] [z YiYi]Si-l i-l

This may be viewed as a simple change of variables from the original dataI in Equation 1. If each data point in Equation 1 is divided by its
corresponding RMS value, and the covariance matrix from Equation 5 is
recomputed, the result is the correlation matrix:

[1 Pxy Pxz] Xnew - X/RMSx

[P] - Pyx 1 Pyz where: Ynew = Y/RMSy 10)
3x3 Pzx Pzy 

Znew - Z/RMSz

The result that the correlation coefficients are scaled between -1 and 1 is
not very obvious. It is essentially identical to Cauchy's inequality
stated as follows: [jxy] 2 < [Zx 2 ][Xy2 ]. Taking the square root of both
sides and dividing through by RMSX and RMSy, gives: Pxy ! ±1.

To understand this result, consider the following three special cases: If
C x i - yi then Pxy - I:

n n
xiY i  C xix i

C Ci-I i-i C

Pxy - 1 11)
n n n n C

[E xixil [x yiYi] yz xixi]C2tX xixil

If- C xi  Yi then Px -i
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xiyi  xixiiIi-i -c
Pxy = -1 12)

n n n n C i

[I xixi] [I Yii] [X x~xjjC2[E xixi]
i-i i-i i-i i-i

Clearly the magnitude of xi and yi are controlled by dividing by the RMS. i
The most extreme case occurs when there is only one non zero x defined as
Xbig" b

Tf xi xbi {f 0 - hnPxy -(yj/./n)/RMSy
[0 if i 0j

n

i-XiYi Xbig Yj yj/n 13
Pxy 13

n n n RMSy 1

[X xixil [X yiyi] Xbig Z yiyi
i-i i-I i-i

The correlation coefficient between two sets of numbers indicates the
degree to which the two sets of numbers agree. When the correlation
coefficient is zero the two sets of numbers are unrelated to each other, or
in a sense, orthogonal to each other (i.e., if the sets of numbers are
viewed as vectors, the dot product of the two vectors is zero: xiy i = 0).

THREE DIMENSIONAL RMS3

Because of the three dimensional nature of the motion, it makes sense to
generalize the concept of the RMS value to define an RMS surface in space.

Consider the direction cosines that define an arbitrary direction in space,
i.e., <0x,0y,0z> .  The term 0x is the component of the new direction
oriented along the old x direction, and so on. In order to be direction
cosines the sum of the squares of the components must equal one indicating
unit length. Using the direction cosines it is possible to write the
original vector's component in the new direction, as shown below:

<k> - <0xXl+0yYl+0zZl,0xX2+.yY2+ .z2 ..... OxXn+OyYn+Ozzn> 14)

The RMS of the response in this direction is simply the square root of the
variance in this direction as shown below:

n n
,x= X ixi/n = [xxi+OyYi+OzZi]xXi+yYi+zi/n 15)

i=l i=li

Just expanding this out algebraically, starting with xi for nine terms:

I
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*n x - x2 xixi/n + Ox4Yi ixiyi/n + Ox4zi xiYi/n 16)
n n n

"0yox. I Yixi/n +  xy2 yiYi/n + Oy~z Z YiZi/n
i-i i-i is-I

n n n

zox zixi/n + zYiZziyi/n + Oz2 Z zizi/nI i-i i- i-i

Identifying the sums as the original variances from Equations 5 and 6, and5 rearranging:

VA - xVxxOX + OxV + xVxz4z 17)

Ix 17)~ ~yy yy~

+ o)Vy4)x + O + oyvyxo)

+ ozvzxox + ozvzyoy + ozVzzoz

I. Gathering up terms into matrix notation:

V - Vyx Vyy Vyz  0y - (0' [V](0) 18)
Ix3 3x3 3xl

I Yzx Vzy Vzz- loz

The point is that variance (and RMS) rotate as vector quantities. The
value in any arbitrary direction is a function of all the terms in the
covariance matrix. The RMS in all directions can be swept out using the
equations above. By plotting the value of the RMS as a point in the
direction of the unit vector, <4>, used to calculate the RMS, it is
possible to sweep out a continuous surface showing the RMS value in all
directions. This surface turns out to be surprisingly regular. It is
simply an ellipsoid as illustrated in Figure 1.I
PRINCIPAL COMPONENTS OF THE COVARIANCE MATRIX

3 The RMS displacements described by the covariance matrix are hard to
interpret in terms of arbitrarily chosen coordinates. However any
covariance matrix can be simplified to a diagonal covariance matrix through
the application of a suitable change of coordinates. Suppose one took the
eigen values and eigen vectors of the covariance matrix. The eigen vectors
would give a unitary coordinate transformation which would diagonalize the
covariance matrix (resulting in P12 - P13 - P23 - 0, where 1,2,3 indicate
data associated with each of the three roots). The three eigen values
would equal the squared RMS value of the response associated with each of

the three eigen vector directions.

I
3-6

I



I

I
I
UX !

3I
Figure 1 General Ellipsoidal RMS Surface I

The shape of the RMS of any 3-D motion can always be reconciled into (at
worst) an ellipsoid with arbitrary orientation. Other possibilities are a
two dimensional ellipse (if one root is zero) or a straight line (if two I
roots are zero). In the case of the two dimensional ellipse, the total

motion is 2-D, i.e., there is no motion out of the plane of the ellipse.
In the case of the line, the total motion is I-D, i.e., there is no motion
out of the direction of the line. There are p four possible cases:

1) a 3-D ellipsoid
2) a 2-D ellipse
3) a I-D straight line
4) a point at the origin I

The limited number of outcomes is a consequence of the definition of the
covariance matrix rather than a distributional result from assuming a
normal distribution.

For example, if you were given a set of points that were supposed to be the
path of a vehicle in 3-D, you could determine if the vehicle travelled in a
straight line (in any direction), a plane (any plane), or in general in I
three dimensions. Just substitute the path into Equation 5 and calculate
the roots as shown below. You would need to subtract the mean of each
coordinate off the path in keeping with the assumptions build into these I
results (e.g., center the path at zero). Of course there may be easier
ways of finding out the same information.

The roots of the variance matrix are found by setting the determinant of

the perturbed variance matrix equal to zero:

I
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vxy Vyy- Vyz 0 19)

xz Vyz Vzz'AJ

Expanding out the characteristic equation:

i 3 _ (Vxx + Vyy + Vzz)\2 + (VxxVyy + VxxVzz + VyyVzz 20)

- VxzVxz VyzVyz - VxyVxy)A + (VxzVxzVyy+VyzVyzVxx+VxyVxyVzz

S-VxxVyyVzz-VxyVyzVxz-VxzVxyVyz) - 0

Gathering up terms:

SA3 + a2A2 + alA + ao - 0 21)

I where: a2 - -(Vxx + Vyy + Vzz)

al - VxxVyy + VxxVzz + VyyVzz - VxzVxz - VyzVyz - VxyVxy

I ao - VxzVxzVyy+VyzVYZVxx+VxyVxyVzz-VxxVyyVzz-VxyVyzVxzVxyVyz

One proceeds by defining:
2

q - al/3 - a22/9 22)

r - (ala2 - 3a0)/6 - a2 3/27

sI - [r + (q3 + r2)i/2]l1/3

s 2 - [r - (q3 + r2)/2]/3

Then the roots are real if:

q3 + r  5 0 23)

And irrespective of whether the roots are real, the value of the roots are
as follows:

V1 - (sl+s 2 ) - a2/3

I V2 - -(sl+s 2 )/2 - a2/3 + i (Sl-S2) fJ-/2 24)

j V3 - -(Sl+s 2)/2 - a2/3 - i (Sl-S2) F/2

Also there are the following three identities based on the fact that the
characteristic equation (Equation 21) must be the same for the diagonalized3 matrix as well as the original matrix.

I
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V1 + V2 + V3 - -a2

VlV 2 + V1V 3 + V 2V 3 - a1  25)

V1V2V3 - -a0

PHYSICALLY REALIZABLE CORRELATION COEFFICIENTS I
There is a further constraint imposed on the three correlation
coefficients. Suppose Pxy-Pxz-l but pyz-0 . The x array and the y array
are completely correlated. The x array and the z array are completely
correlated. But the y array and the z array are not correlated at all.
This is clearly nonsense. To be physically realizable, the correlation I
coefficients must satisfy the following relationship:

Pxy2 + Pxz2 + Pyz 2 Pxy Pxz Pyz : 1 26)

Continuing with the example from above: l+l+0-2x0>l, so the case described
above is not physically realizable. Equality in Equation 26 implies no
more than two dimensional motion and possibly only one dimensional motion.

Equation 26 follows from the third relationship in Equation 25. In
Equation 25 it is obvious that it is both necessary and sufficient for a0
to be equal to zero to insure that at least one of the roots is zero.
Going back to Equation 21, the definition of ao was as shown below:

a0 - VxzVxzVyy+VyzVyzVxx+VxyVxyVzz-VxxVyyVzz-VxyVyzVxz-VxzVxyVyz 27) 1
In order for the principal roots to all be positive, it is necessary for a0
to be negative from Equation 25. Thus Equation 27 can be rearranged as I
shown below, by recognizing the required sign for a0 is negative and
dividing Equation 27 through by VxxVyyVzz (a positive quantity):

0 xz +Vz +V I xy yz xz xz xy YZ28a0 V 2  V 2 V V V V V V

xx yy zz xx zz yy zz xx yy xx yy zz xx yy zz

Rearranging Equation 28 gives Equation 26. Empirically, this result is
sufficient to cause the roots to be non negative and equality implies at I
least one zero root.

PRINCIPAL DIRECTIONS OF THE COVARIANCE MATRIX I
Once the roots are known the vectors can be calculated by substituting the
value of the root (e.g., VI) for A in Equation 19. Since the procedure
used to calculate A forced the matrix in Equation 19 to be singular (the
determinant was set equal to zero), there are only (at most) two
independent equations. The third equation is the normalizing equation
declaring the vector to be unit length. For example, one might solve the
following system, given numbers for the variance ("V") values.

3
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(Vxx-Vl) OIx + Vxy Oly + Vxz Olz " 0

Vxy OIx + (Vyy'Vl) Oly + Vyz 4 lz " 0 29)

g Olz - 1

Solving Equation 29 gives values for lxl ly and Olz (usually). Then the
roots are renormalized as shown in Equation 59.

I Olx - Olx / Ix2+0ly2+ Izf

Oly - Oly / )Ix2+0ly2+4Iz 2 note: quantities on the right 30)
are unnormalized.

Olz - lz" / Eu1x2+tny2+w1lz2

This works unless Olz - 0 for the root being considered or the root is
repeated. If Oiz - 0, the first two equations in Equation 29 will be

singular. When this happens simply set another term equal to one (e.g.,
I set Oly - 1) and try again.

If the root being worked on is repeated, e.g., V2 - V3 ; then there is only
one independent equation from Equation 19. Under these circumstances,
first solve for the non repeated root and then use the orthogonality
relations to solve for the other two roots. For example, suppose Equation
29 has already been solved for non repeated root VI . Then the equations to5 solve to get the first repeated root V2 would be as follows:

(Vxx-V2) 02x + Vxy 02y + Vxz 02z - 0

I Olx 02x + Oly 02y + Olz 02z - 0 orthogonality 31)

5 02z - I

Similarly the second repeated root, V3, would be found with two
orthogonality equations, one for each mode that had already been extracted.
Alternately, the vector cross product could be taken between the vector for
Vl and the vector for V2 to get the orthogonal vector for V3.

There is one other possible problem, all three roots can be repeated. If
that is the case, there are an infinite number of possible arrangements of
the vectors (any orthogonal set). It is best to simply use unit vectors:

i ixl,Oly-0 , lz-0 ; 02x-0 ,02y-l,02z-0 ; 4 3x-O 0 3-0, 03z-1-
The matrix of eigen vectors (4) has the remarkable property that it
diagonalizes the original covariance matrix, as shown below:

I [lx 4ly Olz] Vx Vxy Vxz] [lx 02x 0~3x1 V1  0 01

02x 0,2y 0,2z~ Vyx Vyy Vyzj 4 ly 0,2y 03yJ -0 V2  0 32)

I03x 03y 03zJ Lzx Vzy Vzj [#iz ,2z 03zJ -0 0 V31

3
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EUER ANGLE TRANSFORMATION AND THE PRINCIPAL RMS VAUES I

The results above can be further refined by converting to RMS and a set of
Euler angles indicating the principal directions. First the RMS is I
calculated in the usual way:

- RMS2 - RMS 3 - 33) 1
The Euler angles are a series of unitary (length preserving) rotations:[cos 8 -sine 0] 0cos 0 0-sin 1][ 0 0 ]1

sin 6 cosG 8 I0 0 1 0 0~ cos 0-sin ~ 34)

0 0 1] sin 0 cos J_.0 sin 0 cos I
[cosecoso sin~coso-cossinosino sinsino+cos~sinocoso] i
-sin~coso cos~cos40-sin~sinosino cos~sino-sin~sinocoso

-sino -cososino cosocoso 3
The eigen vectors can be equated to the matrix shown in Equation 34 above
to physically interpret the transformation. Using the case shown, the

first rotation (on the left) is about the original Z axis through an angle I
8 in the clockwise direction (clockwise because of the location of the -sin

o term). The next rotation is about the perturbed Y axis through an angle

0 in the clockwise direction. Finally, the last rotation (on the right) is I
about the doubly perturbed X axis through an angle 0 in the clockwise
direction.

In practice it is so hard to interpret the Euler angles that nothing is 1
really gained by performing the transformation. It does make clear that
there are only three independent variables in the eigen vectors (6, 0, and
0). There are nine terms for the eigen vectors, but there are 3
normalizing equations, and 3 orthogonality relations, leaving three
independent variables. In addition to the eigen vectors there are the 3
RMS amplitudes - making a total of six variables. The original variance I
matrix in Equation 5 also had six independent variables since it was

symmetric.

Unlike the Euler angles, the principal RMS values are easily interpreted. I
The largest RMS value in Equation 33 is the largest RMS value to be found
in any direction. The next largest value is the largest RMS value to be

found in any direction perpendicular to the first direction. Finally the I
third RMS value is the RMS perpendicular to the other two directions. This

is the smallest RMS value in any direction.

CONCLUSIONS

At this point much of the previous material comes together. For example,

consider Equation 18 illustrating how the covariance matrix rotates when
multiplied by a set of direction cosines. The result in Equation 32 is

3-11
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essentially identical to the result in Equation 18, except that there are
three sets of direction cosines in Equation 32. Clearly Vl, V2 , and V3 are
rotated variances in the directions indicated by the phi matrix, [0].

The principal directions are orthogonal - this is a property of the eigen
transformation. The form of the rotated covariance matrix is diagonal.
Looking back to the correlation matrix from Equation 10, it is clear that
the principal directions are an orthogonal set in the sense that there is
no correlation between the motions in these unique directions. This can be
in the trivial sense, such as when the 3-D motion is entirely in a plane,
or it can be in the sense of an average where Xxy - 0 when there is no
particular other relationship between x and y.

5 Suppose two of the roots are zero, e.g., V1 - V2 - 0. Clearly the motion
would be 1-D with RMS amplitude equal to the square root of V3 . The motion
would be directed along the line whose direction cosines was given by
<03x,03y,03z>. This specification is general enough that the line can be
pointed in any direction.

Suppose one of the roots is zero, e.g., V3 - 0. The remaining two
perpendicular eigen vectors define a 2-D plane in which the motion occurs
with the variance (and RMS) in the shape of an ellipse. The variance in

I the direction of the major and minor axes of the ellipse is given by V1 and
V2 . Again, this specification is general enough to be able to orient the
ellipse in any plane at all.

In the general case VI, V2 , and V3 are in no particular relationship to
each other. Then the response is 3-D and in the shape of an ellipsoid,
with the variance in each principal direction given by its root. Again,
the ellipsoid can be oriented in any arbitrary way with respect to the axes
the data was originally expressed in terms of.

In the special case where all three roots are equal, the variance (and RMS)
is a sphere. Notice this is the case where repeated roots lead to an
arbitrarily large number of possible eigen vectors. Similarly if two roots

are the same (i.e., repeated), the variance in that plane is circular and3 the orientation of the eigen vectors in the plane is arbitrary.

Ln physical variance matrix can be decomposed into principal components
this way. Thus the only possible outcomes for any time history are the
ones listed: an ellipsoid, an ellipse, a line, or trivially a point at the
origin when all the values in Equation I are zero.

I
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CHAPTER 4 GENERIC 3-D RANDOM TESTING I
INTRODUCTION

This chapter develops the interrelationships involved in writing test
specifications for 3-D random tests. First the finite Fourier transform
is very briefly introduced and the spectral matrix is developed from the

Fourier transform. The power spectral density, the coherence function, and
the transfer function are introduced. Roots and rotations of the spectral
matrix are examined and a number of interrelationships of the data in the

spectral matrix are uncovered. There is an interrelationship of the three
phase angles involved such that a peculiar combination of phase angles
(termed cyclic here) must sum to zero. There is an interrelationship of
the coherences in that they have an inequality that must satisfied to be
physically realizable just like the one for correlation coefficients. The
roots of the complex spectral matrix are real, but the vectors are
imaginary. This limits the use of these roots to procedures for

generating an arbitrary spectral matrix. The vectors associated with the U
roots of the real part of the spectral matrix turn out to point in the
direction of the largest values in space. 3
THE FOURIER TRANSFORM g
Up to this point in the discussion of random data, the order that the data
appears in does not effect the calculation as long as X, Y, Z sets are kept
together. The equations depend on sums, so it doesn't matter what order
the numbers are entered in. Which of the <Xi,Yi,Zi> is i-l is irrelevant I
to the answer. However, typically the data represents a time series, and
there is information about the signal contained in the order in which the
data appears. I
It is possible to perform a Fourier transformation of the data to express
it in terms of sines and cosines. In this transformation each component

(X,Y,Z) of the time history is represented by a series as follows for
X(t):1

Cx L x 7it X it} C X L jlrt xI
X(t) - - +j- C cos LT + Si sin LT _ + Z Ax sin( LT + 0 1)

Where: I
xC - 0 because the mean of the data is zero.

C- the j-th cosine coefficient in the expansion for X(t). n

S. - the j-th sine coefficient in the expansion for X(t).

A. - the j-th amplitude in the expansion for X(t).I I
6. - the j-th phase angle in the expansion for X(t).J
L - the number of terms in the series - (n-l)/2.

T - the time between samples = I/sampling rate.
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In this expansion the coefficients can be found from the following5 relationships:

. L- 0 X(t) cos jit dt - Ax sin
J LTLT 2 )

2LT1S. - TJ X(t) sin tdt - ZcosO3 0LT j i

The vector amplitude and phase angle are found algebraically from the sine
and cosine components using the second term in Equation 2. These follow
from trigonometric identities using Equation 1.

Z A X= 2 x2

3 3 3

tan " 1  
3)

Si

If a full set of coefficients are included, the finite Fourier series
expansion will go precisely through the data points, X(t), limited only by
round off error. Since the series is limited to indices below j-L (where
the frequency is equal to the Nyquist folding frequency at half the
sampling rate), it can not also be time limited. Evaluation of the series
in the negative time regime or above 2LT will show that the time history
repeats itself endlessly.

More frequency points can be obtained by increasing the sampling rate while
the total test time is held constant. However if the sampling rate is
increased, the highest frequency in the series (the Nyquist folding
frequency at 1/2T Hz) will increase proportionally. The spacing between
frequencies will hold constant at T/LT radians/second or I/2LT Hz (which is
essentially equal to one over the total test time). By increasing the
sampling rate, more frequencies are represented but the spectrum remains

discontinuous. The frequency spectrum blossoms into a continuum when the
total test time approaches infinity.

Expanding the Fourier series in terms of amplitudes and phase angles makes
it clear that the Fourier coefficients are complex quantities. Both an
amplitude and a phase angle are involved at each frequency of the
summation. It takes two numbers at each frequency point to represent the
data. Still the time history is not a complex quantity so Equation 1 is
not written in a complex form. A complex number can not be equal to a
scalar without some operator (e.g., I - real or 5 - imaginary). Instead,
Equation 1 shows how the complex Fourier transform converts into a
physically observable scalar time history.
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The finite Fourier series can also be written in complex form as shown in I
Equation 4 below:

Fx(2L-) Sx + i Cx - e [cos Ox + i sin 6x] - A. e j 4)
JLT J i J Ji J

Notice that the function of time has been suppressed in this notation. It
is just convention how to reassemble the coefficients into time histories.
Also notice that the transition between point estimates at frequency line
j, and the underlying continuous function Fx(f) has been designated with I
the approximately equals (-) operator instead of the full equality (-)
operator. This has been used throughout to distinguish between theoretical
and experimental variables. I
SUMMATION VERSUS INTEGRATION 3
The integral signs in Equation 2 are somewhat deceptive because the actual
evaluation is done with summations. Typically the trapezoid rule would be
invoked to convert Equation 2 into the form shown below. To be rigorous,
using the trapezoid rule the first and last term of the summations would
have to be multiplied by factors of 1/2, however, this doesn't matter much
because the first and last term of the time history, X(0) and X(n), need to I
be close to zero to avoid introducing step functions at the boundary wherethe time history repeats itself.

X ~1 [2LT _ 1 n ikn
C. - X(t) Cos ilt dt Z X(k)cos

j JT 0 LT Lk-0 CsL

5) I
X 1 f2LT I n jkir

O X(t) sin ! Lt dt X X(k) sin

Commonly some windowing procedure is used to enforce the requirement that
the first and last terms of the time history need to be close to zero. The
time history, X(t), is multiplied by a function which is numerically close
to zero at the first and last time point. For example, consider the
Hanning window: 3

x'(t) - X(t) i (1 - cos !-) 6)

The window forces the time history to have zero values at t-0 and t-nT. It
also slightly perturbs the frequency coefficients producing changes,
(possibly errors) of the order of 20%. The window smooths out the
frequency response, tending to avoid sudden jumps unless they are
associated with data from the center of the window. Whether this is an
error or not depends on what you want to accomplish and what the data you 3
are analyzing represents.

4-3 I

I



I

I" THE SPECTRAL MATRIX

The corollary of the covariance matrix in the frequency domain is the

spectral matrix. Each term of the covariance matrix was of the form:

n
V - xiyi/n 7)

xyi-l

For the spectral matrix, the data is viewed as continuous so the summation

is replaced by an integral from 0 to 2LT, the xi and yi terms are
represented by their continuous series representation from equation 1, and
the 1/n scaling is replaced by I/2LT (notice n-2L+l and T cancels the units
of dt). The term is still the covariance so Vxy is still an appropriate
symbol to represent it.

V - 2LT1rt 17 1syi 0 5Z+ 5 y } dt
T Tj L y kt y ksit8Vy0 J- i LT i tjk-lf . ... E

Several integrals related to the orthogonality of sines and cosines
greatly simplify the expression in Equation 8. In particular:2

2LT j0, jk
cos LT cos- dt - LT, j-koO

L T 12LT, j-k-0

j2LT . .,!t k t I 0, jok

sin LT sin- dt - LT, j-kO 9)
o L 0, j-k-0

J2LT krt
cos LT sin- dt -0
10 TII

Thus, Equation 8 can be simplified to give Equation 10:3

I t L x 1l/2T
i x y Xc xy -i X AxAYcos(9y-O ) G ( f ) df 10)

xy 2. jii j j 2 j-i J j j 0 xy

There are a number of ways of deriving the spectral matrix. Most commonly
it is derived from the continuous theoretical definition of the Fourier
transform (see reference 3 for both approaches). Here, the material is

being developed in terms of the finite Fourier transform - which must be
equivalent since the theoretical transform requires infinitely long time
histories over all past and future time. The point of the integral part of
Equation 10 is that the real part of the cospectral density function,
RGxy(f) , is viewed as a continuous function of frequency, and the finite
Fourier transform coefficient expression in the summation is the local
estimate of the value of RGxy at the coefficient's frequency, j/2LT Hertz.

At this point, this is simply a definition.
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The imaginary part of the complex, cospectral density function, SGxy(f),
can also be calculated from the finite Fourier transform coefficients by
introducing a 90° phase lag into the expansion for Y(t) and calculating as £
shown in Equation 8. Again, the integral part of the relationship is
simply a definition.

_ _ I1/2T1L L

SGxy (f) df - 2 (SzCY-CxSy }  X AxAsin(O- 11)2 Y i i j  j  j-l J  J  11)

Thus the covariance matrix is replaced in the frequency domain by the
spectral matrix:

rG xx(f) U X (f) G Z(f)1I

[G) - G (f) G (f) G Mf 12) 3G zx (f ) G zy (f) Gz Z(f)J

From Equations 10 and 11 it is obvious that RGxy(f) - XGyx(f) while
SGxy(f) - -S (f) and so on. In Equation 10, the difference in sign of
the phase angles for the real part doesn't matter because the cosine is an
even function, i.e., the cos(-x)-cos(x). In Equation 11 for the imaginary
part, there is a sign change between 3Gxy and SIyx, thus the complex
conjugate, denoted by *, must be used to calculate one term from the other.
The notation *z denotes the complex conjugate of the complex number z. If
z-x+yi then *z-x-yi. The only use made here of * is to show that a complex I
conjugate pair is multiplied together to produce a real number.

Just as the covariance matrix could be rotated to give the variance and 3
covariance oriented along arbitrary directions, the spectral matrix can be
rotated to give autospectra and cospectra along an arbitrary direction.
Just as before, given a set of direction cosines <Ox, Oy, Oz>, the
autospectra in the new direction can be calculated as follows:

Gx x (f ) Gxy(f) Gxz(f)] Ox,

GA(f) - [OyO>Gxx(f) Gxy(f) Gxz(f)]fOy1 - (4i'}(G](0) 13)xx 'l~~"zIcxf)~y~ i~ x3 3x3 3x1
-'dzx(f) GzY(f) Gzz(f). Oz, I

Expanding in Equation 14, firms like OxGxyoy + OyGyxox have their complex
parts cancel since 50 xy - -3G yx  The result is a real number indicating
the value of the autospectrum in the new direction. The value of G^ is I
uneffected by the imaginary parts of the matrix. xx

G.(f) - Oxxx4 x + OxGxyoy + OxGxzoz 14) £xx

+ OyGyNx + 4yGyyy + OyGyzoz

+ Ozdzxox + OzGzyoy + Ozzz'z I
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Equation 13 motivates searching for the roots of the spectral matrix. The
spectral matrix rotates according to the same type of matrix rotation as
occurs with eigen vectors and eigen values. Further, the spectral matrix
would be greatly simplified if it could be diagonalized. All the coherence

and phase issues would drop out. The eigen vectors are a transformation
that do this to a general matrix, thus it seems approriate to try rooting
the spectral matrix.

Once again, Lt is possible to calculate principal directions as a function
of frequency that produce uncoupled inputs. Once again, the roots of the
spectral matrix can be found by setting the determinant of the perturbed
spectral matrix equal to zero:

Gxx(f)- Gxy(f) Gxz(f)

yx(f) Gyy(f)-X Gyz(f) - 0 15)

_Gzx(f) Gzy(f) Gzz(f)-A_

I Expanding Equation 15 gives as follows:

A A3  (Gxx + Gyy + Gzz)A 2 + (GxxGyy + GxxGzz + GyyGzz

- Gxz*Gzx - Gyz*Gzy - Gxy*Gyx)A + (Gxz*Gzx)Gyy + (Gyz*Gzy)Gxx 16)

5 + (Gxy*Gyx)Gzz GxxGyyGzz - GxyGyzGzx - GxzGzyGyx - 0

Notice that all terms in Equation 16 are real (not complex). The last two
terms are real because they have phase angles that go around in a circle
and cancel out. The phase angles go through a complete cycle. For
example, Gxy(f) has a phase angle which expresses the angle between the
input X and the response Y at the frequency f. Thus LGxy(f) - 8y(f) -

I 8x(f). Expanding out the other terms and adding up the angles gives zero.
Notice that the choice of terms to add up is based on the terms that appear
in the determinant of the spectral matrix in Equation 15.

3 LGxyGyzGzx - {9y(f)-x(f) + (z(f)-y(f)) + {0x(f)-0 z(f)) - 0
17)

iGxzuzyGyx - {Oz(f)-ox(f)} + (0y(f)-oz(f)) + (x(f)-oy(f)) = 0

Rooting Equation 16 gives the values of the three autospectra associated
with the principal directions. The spectral matrix is a special form of a
Hermitian matrix.4  In general the roots of Hermitian matrices are real but
the vectors are potentially complex. What has been found here is that this
is the case with the spectral matrix: the roots are real and positive but5 the vectors are complex.

Complex vectors are a problem conceptually. As will be shown later, in the
special case of the spectral matrix at a frequency, all three x components
of the complex vectors have the same phase angle, all three y components
have a second phase angle, and all three z components have a third phase
angle. Further, the three phase angles in the vectors are predictable
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based on the phase angles in the spectral matrix itself. This requires i
that the X, Y, and Z Fourier components must be shifted relative to each
other by a fixed amount. While this might be useful in generating time
histories with the desired characteristics, it does not indicate the
principal directions under real rotation vectors.

The result found here and developed in the remaining sections of this i
writeup was that given Equation 17, the principal directions are indicated
by rooting the real part of the spectral matrix. The imaginary part of the
spectral matrix does not contribute to the value of the PSD. Thus to find
the principal directions, it is sufficient to root the real part of the
matrix. Then calculating eigen vectors for the roots of the real part of
the matrix gives the rotation matrices indicating the principal directions.
Empirically, this approach gives positive roots and real eigen vectors that I
indicate the maximum, minimum, and intermediate values of the rotated PSD.

POWER SPECTRAL DENSITIES AND THE RMS AMPLITUDE

The finite Fourier series for the time history can be converted to an
estimate of the power spectral density (PSD) by taking the sum of the
squares of the amplitudes. The integral of the PSD is the amount of the
RMS associated with the frequency band the integral is taken over. The
points in the PSD have units of G2/Hz and represent a localized estimate of
a continuum over frequency. Thus the PSD amplitude is defined as follows.

G (j/2LT) - (Cx +S. ) scale factor - A scale factor 18) 3
xx g

To calculate the scale factor, Equation 1 (which expresses the time history
in terms of the Fourier coefficients) can be used to calculate the RMS.
Referring to Equation 10 for Vxy and replacing the y with x:

1 L X2-X2T/2T
RMS- 0 (f)df 19)

j-l[ C

The scale factor from Equation 18 is clear from Equation 19. The summation n
needL (C.2+s.2 ) to be scaled by 1/2 to get the RMS. The integral must b- 3 3
multiplied by the frequency spacing in Hertz between the data points
(1/2LT) to represent df. Thus it is necessary to multiply the coefficients U
Cj2 and S.2 by LT to get the integrand to integrate to the RMS and have

units G2/Az (C 2 and Si2 have units G2 and LT has units of sec/cycle or
1/Hz). Thus the scale-factor in Equation 18 is equal to LT.

THE COHERENCE FUNCTION 3
Just as the covariance matrix could be renormalized to give correlation
coefficients, it is possible to renormalize the spectral matrix to give
coherence functions. Since the on diagonal terms of the spectral matrix n

4-7 1

I



I
are scalars, it is possible to divide the off diagonal terms through by the

square root of the two diagonal terms.

xy(f) - 7x35f) Gyyf) 20)

1xy (f)l - JcOs2(09-8X)+sin2(8e-ex)-Iy J J J

A single finite Fourier transform of data from a time history always
produces coherence equal to I. However, if the constituent parts are
averaged over a number of finite Fourier transforms, and then the coherence

is calculated based on the averaged quantities, the magnitude of the
coherence will vary between 0 and 1 and indicate the degree to which the

I data is responding in a repetitive fashion at that frequency. If the data

isn't particularly repetitive, the cospectrum will vary widely and tend to

average to zero. Coherence is a complex quantity with phase equal to the

cospectrum's phase. When plotted as a real quantity, coherence is squared
(by multiplying by the complex conjugate).

For example consider N estimates of the Gxy(f), Gxx(f), and Gyy(f). To£ estimate the coherence 3xy(f), Equation 21 would be used:

N i)2(f)

()il xy 21)xy~ f  N N

] .xx ii

An example should help clarify how Equation 21 produces coherence values
other than one. Suppose we had five estimates (N-5) of the spectral data

at 10 Hertz, as follows (the numbers are arbitary and only exhibit the
typical behavior):

3 Estimate Gx I xyI L(0 Gx 0xx G G IxvI
1 (.941,.K88) 1.11 20- .998 .999 1.2Z 1 1~l 1.
2 (-.432,.812) 0.92 88* .933 .966 .906 .952 1.0

3 (.756,-.840) 1.13 312- 1.302 1.141 .980 .990 1.0

4 (.865,.460) 0.98 28* 1.059 1.029 .906 .952 1.0
5 (.808..294) 0.86 200 .748 .865 .990 .995 1.03 (2.938,1.214) 5.040 5.016

Yxy - (0.584,.261) or 0.64 at L24
°

Each estimate individually has the amplitude c, the coherence equal to 1.0
on a term by term basis. However, because the phase angle and PSD varies

so much, the overall average is only 0.64. The issue now becomes, why
i would the phase angle and PSD vary?
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It is easy to see physically how coherence can be less than one by
considering a signal composed of electrical noise superimposed on
structural data. Electrical noise typically is not the same in both the
X(t) and Y(t) time histories - it is incoherent. Averaging the cospectrum I
between two signals with some noise on them will tend to eliminate the

influence of the noise in the cospectrum because the relative phase angle
between the two noise signals will vary between frames. On the other hand,
the RMS amplitudes will always be increased by the noise. If the two
signals are all electrical noise, the coherence will tend to be zero. The
coherence indicates the degree to which the relationship (amplitude and
phase) between two channels at a frequency is a constant.

A second less obvious way that coherence can be less than one (for a linear
system) is to have multiple incoherent inputs. If there are three inputs I
X(t), Y(t), and Z(t) at the shake table and the three inputs are coherent

at a frequency, that implies that the shake table is moving repetitively in
either a straight line or an ellipse at that frequency. If the inputs are
coherent, the motion is at most 2-D at that frequency and is sinusoidal.
On the other hand, if the inputs are completely incoherent, the motion is
random and 3-D. For an intermediate value of coherence, the motion can be
decomposed into coherent and incoherent paits and summed.

In general, a coherence between 0 and 1 can only occur under one of the
following conditions:

5

1) Some form of noise is present in the signal.
2) There are multiple incoherent inputs to the system.
3) The system is not linear or is not at steady state.

Coherence follows the same equation as correlation coefficients to be
physically realizable. Again the characteristic equation (Equation 16) I
gives the following result:

0 e a0 - (Gxz*Gzx)Gyy + (Gyz*Gzy)Gxx + (Gxy*Gyx)Gzz 22) 3
- GxxGyyGzz GxyGyzGzx GxzGzyGyx

By rearranging Equation 20 to solve for the cospectra in terms of the i
autospectra and the coherence, all references to cospectra in Equation 22
can be eliminated in terms of the complex coherence. 5

ao

O xy-yxz*Yzx +Yyz*lzy +7xy*lyx -i 7xy7yz~zx -Yxzlzy7yx 23)

Rearranging Equation 23 gives the same final result as for correlation
coefficients as follows: 3

I Yxz*Tzx + 7yz*Yzy + 7xy*7yx - 27xylyz~zx 24)

Again, the last term in Equation 24 is not a vector because the phase i
angles go through a complete cycle.
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I.
THE TRANSFER FUNCTION

The transfer function between a single input and any output, e.g., X(t) and
Y(t), can be estimated from their Fourier coefficients by simply taking the

I ratio of the two finite Fourier series.
6

Fy(f) Ay. y ox AY[cos(O -OX)+i sin(06-6o)]
I :j 1(Hi (f)- - - - e j i 25)

xy Fx(f) AA

However, this procedure has problems when more than one input is involved.
According to Equation 25, the entire response at F (f) is from Fx(f). If

3 there is some other input causing response at y, that response needs to be
subtracted off of Fy(f) before taking the ratio! Instead, in general it is
correct to estimate the terms of the spectral matrix and calculate the3 transfer function as follows:

~ (f) yy x.(f) AZ[cos(O -OX)+i sin(V -9.)]

P xy(f)- G (f) -- 7, X****7~*7 Y** 1 A 1 1 26)
x

Notice that while Gxy(f) and Gxx(f) are expressed in terms of amplitudes

squared, one of the two Ax terms cancels leaving exactly the right ratio to
be a transfer function. The sense in which this is a transfer function is

I made clear by multiplying by the Fourier transform for X(t) from Equation

4. In complex form, Fx(f) represents the Fourier transform of X(t) as
shown below:

xyx
_[cos(-_)+i sin( )A_

HA [cos O.+i sin 6.) 27)
xy Ax 3 o3

- A [cos OY+i sin 8 ] = Fy(f)

i From Equation 26 it is easy to see that the phase angle of the transfer
function is equal to the phase angle of the off diagonal term of the

spectral matrix. Gxx(f) in Equation 26 is a scalar. Only the Gx(f) term
is a complex number and has a phase angle. From the third part of Equation
26 it is clear that the same phase angle applies to 7xy(f). The fact that
there is only one phase angle for the transfer function, coherence, and
spectral matrix is the easiest way to see that the phase relationship of
Equation 17 must hold. HxyHyzHzx-Hxx-l. The cycle only guaranties that
zero is the result of expanding the phase angle of the transfer function
between X and Y, between Y and Z, and finally between Z and X. This

produces the transfer function between X and X, i.e., 0 ° or some multiple
of 2n radians phase angle.

I SIGNIFICANCE OF AVERAGING

In discussing the spectral matrix, power spectral densities, coherence
function, and the transfer function, the observation that multiple data
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frames should be averaged to estimate these quantities has come up.
Indeed, when more than one input is involved, it is not possible to
correctly estimate the coherence or the transfer function without multiple I
frames of data. While the definitions will yield meaningful relationships
that follow all the equations for a single set of time histories (with all
coherences equal to one), there is absolutely no reason to expect the
results to be predictive of future data if only one frame is used. By
averaging, the coherence function establishes the degree to which the
individual frames are repetitive and thus useful in predicting future
behavior. I
On the other hand, there are occasions when averaging data doesn't make
sense. For example when working with tim2 histories from staging
transients for a rocket launch, the entire event fits in one frame. All

one is doing with the Fourier transform is to convert a time history into
the frequency domain so it is more easily processed. Since the data is
transient in nature, it is not possible to produce meaningful averages.
Under these circumstances, much attention must be given to overcoming the
physical limitations of the Fourier transform, e.g., that the data at t-O
and t-nT be zero. Using the Laplace transform would be a better solution I
under these conditions.

3-D RESPONSE OF A MODE TO RANDOM EXCITATION l

Consider the response of a structural mode to a random base input. Suppose
the test article is cantilevered off a large mass at the base (e.g., the I
shaker table), so that the mode shape at the shaker table is small for all

the modes in all three directions. Choosing some other point on the test
article where the mode's response is large, the process through which the I
wide band random vibration becomes coherent through the filtering action of
a structural mode can be examined.

The structural mode is represented by the following differential equation: I
d2qj dqj 2 - < i

m 2 + 2 jwjmj,- + w mjqj - )28)
Sdt2 txA 1xl

The physical response all over the test article is given as follows:

(x i ) - (4.} qj 29).xl Al lxi 3
The transfer function for a single mode between any two points on the test
article can be calculated by solving for the steady state response in
Equation 28 to sinusoidal forcing at the input location. This result is I
shown in Equation 30.

iout ou
H p) in m2 (w 2= ) -i (2 30w))
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Equation 30 gives a displacement output for a force input to a single mode.
To get more than one mode, simply sum Equation 30 over as many modes (j) as
are desired. If an acceleration output is desired, it is necessary to
multiply by -w2. To get some other input besides a force, for a single
input it is possible to ratio transfer functions to cancel the force

required to produce a desired displacement or acceleration.

Manipulating the right hand side of Equation 28 it is clear that a
structural mode responds to inputs in only one direction when the mode is
excited at it's base. The excitation terms on the right of the equation
call for a summation of the components of the force times the components of

the modal response zt the base. In terms of an equation this is as
follows:

<4>(F } - 0,.F + Oj + F 31)

This is just the dot product of the instantaneous force vector with the
local modal response vector. The dot product returns a scalar which is the

projection of one vector on the other. Clearly the mode responds in only
one direction (e.g., in the direction of the vector <Ox, yz>). The input
in this direction can be calculated from Equation 18 which showed how to

rotate the spectral matrix around to calculate the spectra in any
direction.

This also proves that the coherence at the modal frequencies will tend to
be very high between responses in the mode's local direction. The mode
only responds to one input, the one from Equation 18, irrespective of the
fact that there may be three incoherent inputs at the base. One input is

always coherent with itself. Thus the response in the modal direction
between different points on the test specimen will always be very nearly
completely coherent in the absence of noise.

MEANING OF REAL/IMAGINARY PARTS OF THE SPECTRAL MATRIX

* It is apparent that the imaginary part of the spectral matrix does not

influence the RMS amplitude or the spatial distribution of the PSDs. If
you consider the last Equation in Chapter 2 reproduced for the 3-D case

below: z y x
ix33x-[[e<x>'V lx)x

P(<X>I[V]) - (21) 3/2 1x) dx dy dz 33)
ix3 3x3 (27r) 3 2IV I  _ i-

Where: - <x>'V lx) is a rather long algebraic expression

1x3 3x3 3xl

IVI is the determinant of the covariance matrix.

The trivariate normal distribution function depends only on the covariance
matrix. It determines all the spatial distribution issues of the RMS
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signal. Depending on the covariance matrix, all possible spatial i
arrangements of the ellipsoidal RMS surface can be achieved.

Earlier in this section it was argued that the covariance matrix is the 3
integral of the real part of the spectral matrix as shown below:

[fG x fdf fX-GXY (f)df fs7Gx(f)df]

[v] - fx f df fG (f)df .f2g? (f)df 34)
3x3 YXyy yz3

3×3 d zx(f)df 2dzy(f)df fGzz(f)df

Evidently only the real part of the spectral matrix influences the 5
amplitude of the signal. The imaginary part of the signal must influence
the relative timing of the X, Y, and Z components with respect to each
other, since this is the only role left for it to play. 

This issue is of major consequence. A structural mode filters the part of
the signal it the mode's local direction and only responds to inputs in
that direction. Detailed timing is of no consequence to a single I
structural mode. Thus a single mode will only be influenced by the real
part of the spectral matrix. When there are repeated modes, it may be
possible for there to be interactions between the repeated modes that cause I
the structure to react to the timing between the inputs. However, repeated
modes don't occur very often. In the acoustic regime, the modal density
gets high, and it seems likely that the detailed timing will become
relevant. However this occurs at very high frequency and our excitation is I
base excitation not acoustic excitation there anyway. It appears that our
order of preference for control should be: 1

1) the Diagonal
2) the Real Part of the Spectral Matrix
3) the Imaginary Part of the Spectral Matrix I

Currently the control system at HDL is reportedly got the preference order
below: 3

1) the diagonal
2) the amplitude (i.e., coherence) of the spectral matrix
3) the phase angles of the spectral matrix I

While the choice of coherence as the second most significant parameter is
intuitive and seemed reasonable, it is clear that this is the wrong choice
since the imaginary part almost no structural consequence.

CONSTRAINTS ON SPECIFICATION WRITERS I
There are numerous notational issues to be resolved. The spectral matrix
can be defined any of the ways shown in Equations 35 through 39, as
follows:
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I.

S(f) Gxy (f) Gxz (f)]

[G - GYX(f) G (f) G (f)~ 35)

3 Lzx( f (f) Gzz(f)J

Equation 36 is Euler's Equation and helps explains the amplitude and phase

notation for complex numbers (i.e., with the symbol "").

IG (f) LGxy (f)-Gxy (f)IeiLGxy(f)G xy(f)I(cosL xy(f)+i sinLG xy(f)) 36)

Equation 35 can be written in terms of amplitudes and complex phase angles
5 as shown in Equation 37.

Gxx(f) Ixy(f)ILGxy(f) IGxz (f)ILGxz (f)

[G] - IG (f)ILG (f) Gy(f) IGy (f)ILG (f) 37)

3x3 r X yy yz yz

JGzx (f) ILG zx(f) IG zy (f) ILG zy (f) G Z(f)

This can also be written in terms of the PSD values on the diagonal and the
complex coherence function (e.g. Ixy(f)) as follows:

- G x(f) !0xx(f) G Y(f) NY (f) !Gxx(f) Gz -f (f)

* [G] - )G yy (f) Gxx(f) (yxf) G y(f) !Cyy(f) Gz (f) 38)3x3 [ xxyxy

L'Gzz(f) Gxx(f) 7zx(f) JGzz(f) Gyy(f) Yzy(f) G zz(f)

Leaving out the functions of frequency so everything will fit (all terms
are a function of frequency), this can be written in terms of the magnitude

and phase of the coherence, as follows:

Gxx  /GxxGy I Gxy L-yxy 1GxxGzz 1yxz Lxz

[G]y- yJGT,]xx "x I /-y! G [Gyyzz Iy jLy 39)
3x3 1yx yx yy tyz yz

[!.,GzzGxx + Izx .,, GzzGyy 'zy 14yzy G zz

Equations 35 through 39 indicate the notation and variables that the
spectral matrix can be expressed in terms of. Equation 39 is written in

terms of the variables that the HDL 3-D test specification is currently
loaded into the system. For example, Gxx represents the 'PSD spectral line

for an accelerometer oriented in the direction of the X axis. l7xyI
represents the magnitude of the complex coherence function (or just the
coherence when it is considered to be real) between an accelerometer
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oriented along the X axis, and one oriented along the Y axis. LYxy - LGxy I
is the phase angle for the coherent part of the signal between an
accelerometer oriented along the X axis relative to one oriented along the
Y axis (the equality, Ly- LGxyP comes from comparing terms in Equations
37 and 39). Of course aly three terms, Gxx, lixyl, and Ljxy, occur at a
spectral line of frequency, f, and vary by frequency. In addition to the
large number of relationships implied by Equations 35 through 39, there are
also a number of other additional interrelationships.

The spectral matrix is Hermitian. Hermitian matrices are a complex version
of a symmetric matrix. The real parts of the matrix are symmetric and the I
complex parts are symmetric in amplitude but opposite in sign. This
structure allows the determinant and characteristic equation to be
completely real. If the complex parts had the same sign, they would add 5
instead of canceling each other. The spectral matrix is Hermitian because
the variable being predicted is the PSD value at some point and orientation
in space. The PSD is real, therefore the diagonal of the spectral matrix
must be real.

RGxy(f) - NGyx(f) and 3Gxy(f) - -SGyx(f)

XGxz(f) - XGzx(f) and SGxz(f) - -SGzx(f) 40)

3IGyz(f) - RGzy(f) and ZGyz(f) - -3Gzy(f) 3
Switching to complex coherence and PSD value variables, this is
mathematically equivalent to the following: 3

X7xy(f) - X 7yx(f) and 33xy(f) - -Yyx(f)

2xz(f) - R7zx(f) and 3xz(f) - -3zx(f) 41)

Rfyz(f) - RIzy(f) and 3yz(f) - -Szy(f)

The same relationship can be written in terms of the spectral matrix phase I
angles and amplitudes from Equation 37:

LGxy(f) - -Ldyx(f) and I xy(f)l - IG (f)I I
LG xz(f) - -LGzx(f) and Idxz (f)l - IGzx(f)1 42)

LG yz(f) - -ZG zy(f) and I yz(f)l - zy(f)I

Again, this is equivalent to Equation 43 in terms of the amplitude and
phase of the coherence from Equation 39:

Ljxy(f) - -Liyx(f) and 17xy(f)l - LJyx(f)j 3
Lyxz(f) - -Ljzx(f) and Ijxz(f)i - 17zx(f)l 43)

L~yz(f) - -Ljzy(f) and I7yz(f)l - I7zy(f)l
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I Some of the phase angles must sum to zero because they are relative angles.
The angles e are the finite Fourier series phase angles, and they are
angles relative to the start of the frame. The time of the start of the
frame is totally arbitrary, thus only differences between 0 values can have
physical significance to the system:

LGxyGyzGzx - (y(f)-x(f)) + ( 0z(f)-y()) + (eX(f)-ez(f)) -0 44)

LGxzGzyGyx - (Oz(f)-ax(f)) + (By(f)-Oz(f)) + (0x(f)-Oy(f)) - 0

Notice that terms from both above and below the diagonal (from Equation 35)
are involved in both expressions in Equation 44. This is why all three
terms can be positive. The indices of the variables cycle, e.g xly - y,z

z,x. Of course the product can be written in any order: LGyGyGz
LGyzGxyGzx - LGzxGxyGyz; however, LGxy yzGzx A LGxzGzyGyx , since they
involve different variables. Any set of angles that can be algebraically
rearranged to go around in a cycle will sum to zero, since this is the
expression for estimating the transfer function phase angle between a
variable and itself.

Again switching to the complex coherence as the variable, this is exactly3 equivalent to:

Lxy yzyzx - t0y(f)-#x(f)) + (z(f)- 9 y(f)) + t0x(f)-z(f)) - 0

I L~xzlzy~yx - (oz(f)-ex(f)) + (Oy(f)-z(f)) + (6x(f)-6 y(f)) - 0

Physically there must be some constraint on the three coherence amplitudes.
For example, if the X axis is completely coherent with respect to the Y
axis, and the Y axis is completely coherent with respect to the Z axis, it
is impossible for the X axis to be incoherent with respect to the Z axis.
If I7 (f)l-l and 1 (f)I- it is necessary that 1-v (f)1-l. The general
condifyon is found b requiring that the principal values of the rotated
diagonals remain non negative. It is both necessary and sufficient forU the following condition to be satisfied (* denotes multiplication of
complex conjugates producing a real result) for the roots of the complex
spectral to be non negative:

3 1 3 xz*zx + -Iyz*7zy + fxy*lyx - 21xylyzlzx 46)

I Equality in Equation 46 implies that at least one of the principal values
of the complex spectral matrix is zero, thus the motion is at most 2-D. In
terms of real variables, Equation 46 is as shown below:

3 i I xzI2 + I7yzI + t7xyl 2JlxyJH7yzlJzxJ 47)

I . As far as we have found to date, these are the only restrictions that hold
mathematically.
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CONSTRAINING THE REAL PART OF THE SPECTRAL MATRIX

In developing Equation 47 it was obvious that the term on the right of
Equation 47 was a statistic indicating the dimensionality of the data.
When the expression is equal to one, one of the principal values must be
equal to zero. If the expression is equal to zero, the coherences are all
zero and the principal values are equal to the input diagonal. Clearly the I
potential is there to construct a statistic out of this expression. Since

only the real part of the spectral matrix affects the amplitude, to
calculate an amplitude estimator, it is necessary to form the equivalent of
Equation 47 with only the real part of the spectral matrix. Since the
condition involves only the real part of the spectral matrix, it can not be
expressed in terms of coherence alone, independently of the phase angles.

Instead, all three phase angles enter the expression. Proceeding just as I
before, consider obtaining the roots of the real part of the spectral
matrix, as follows:[ xx(f>-A XIGxy(f) X~xz(f)1

XGyx(f) Gyy(f)-X RGyz(f) - 0 48) 3
RGzx(f) IGzy(f) Gzz(f)-X I

Expanding Equation 48 gives as follows:

(Gxx + Gyy + Gzz)X2 + (GxxGyy + GxxGzz + GyyGzz 49) 5
-R5xzl~zx - RGyzXGzy XGxyRGyx)A + XG-zRGzxGy + IGyZRGzyGxx

XGxy XGyxGzz - GxxGyyGzz - RGxyRGyzxIGzx - 3IGxz GzyXGyx -x 0 I

The requirement guaranteeing non negative roots is: 5
0 - XGxz2IGzxGyy + lGyzlGzyGxx + RGxyRGyxGzz 50)

- GxxGyyGzz - EGxy GyzsGzx - xGxzxGzy Gyx I

This can be expanded to give the following expression in terms nf the
coherence amplitude and cosine of the phase angles:

- 2 2- - 2 2 - - 2 2-
I Ixzi cos Ltxz + [Yyzi cos L1yz + I cxyl2Cos /-7xy 51)

-- 2I I -f--co cs- os-I217xyllyz llxzlcosLyxy coSL yz coSLyxz

or in terms of complex coherence variables: 3- 2 - 2 - 2

1 iixz + RTyz2 + Txy 2 xz xYyz 2?xy 52)

I
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I The right hand side of Equation 51 or 52 indicates the dimensionality of
the signal at that frequency. If the right hand side approaches one, then
the signal is no more than 2-D. All spectral lines that have the same
roots for the real part of the spectral matrix have the save value for the
right side of Equation 51 and 52. For the shape of the ellipsoid to be the
same between two spectral lines, it is necessary but not sufficient for the

I right side of Equation 51 and 52 to be equal.

I
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CHAPTER 5 EMPIRICAL 3-D RANDOM TEST RESULTS I

INTRODUCTION 5
To understand the limitations the constraints discussed in the last chapter
impose, a number of specification examples have been developed depending on
how the parts of the specification are determined. For example, the phase I
angles might be chosen at random while the coherence was fixed at a
constant. Another way to select a test would be to adopt constant phase
angles, but select the coherence as a random variable. By examining these I
two cases to determine what the principal components are in each case, it

becomes obvious that these specifications produce unexpected, and unwanted
responses in directions other than the input. 5
RANDOM PHASE, CONSTANT AMPLITUDE COHERENCE

In writing a test specification for a 3-D test machine, one must completely 5
specify the spectral matrix at each frequency. Typically three PSD values

in the X, Y, and Z directions are known from previous 1-D testing. These
levels are usually determined by enveloping data in the relevant test

directions. These three PSD values form the diagonal of the 3-D spectral
matrix. For example suppose the PSD envelope is given as follows, and as
illustrated in Figure la: 3

X & Y axes:
5 Hz to 10 Hz 0.05 g2/Hz

10 Hz to 200 Hz sloping at -4.6 db/oct to 0.0005 g2 /Hz
200 Hz to 500 Hz 0.005 g2 /Hzwideband RMS - 1.9 g

Z axis:I
5 Hz to 10 Hz 0.1 g2 /Hz

10 Hz to 200 Hz sloping at -4.6 db/oct to 0.001 g2 /Hz
200 Hz to 500 Hz 0.005 g2 /Hz

wideband RMS - 1.6 g

The off diagonal terms are more difficult to specify. They are the
cespectra or (after dividing by the square root of the PSD values) the

complex coherence between the channels. There are two parts of each
coherence number: a magnitude less than or equal to one and a phase angle.

Because the terms below the diagonal are the complex conjugate of the terms U
above the diagonal there are only three coherence terms to be determined.
Further, because the phase angles must go through a complete cycle, there
are only two independent phase angles. Finally, because the coheren:e
amplitudes are constrained, the third coherence is limited by the choice of

the other two.

Suppose one observed that typical coherence data was around 72-0.75 and I
decided to set all the coherences at this value. Finally one might select
two of the phase angles at random, and set the third angle to satisfy the

angles constraint.

5-1 1
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Figure 1 Random Phase, Constant Amplitude Coherence

3Figure la The Test PSD Values Figure lb Roots of the Complex Matrix
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Generating data in this way, the complex spectral matrix was rooted 3
producing the curves shown in Figure lb. The significance of these roots

is that they represent the largest and smallest values as a function of

spatial orientation that might be observed in any direction at that

frequency. For example, at 10 Hertz, while the largest input PSD was 0.1

g2/Hz, this procedure for specifying the coherence and amplitude has

resulted in a physical maximum spatially of 0.1833 g
2/Hz. Similarly the

smallest input PSD was 0.05 g2/Hz while the physical minimum spatially is

0.0067 g2/Hz. Assuming the PSD data enveloped test data, this is seriously

different than the test data that the PSD's were based on.

Evaluation of th3 vectors reveals a problem with this interpretation. The m
vectors are complex. The following complex results are typical:

Spectral Matrix: I

( 0.050000, 0.000000) ( 0.043287, 0.001081) (-0.036926, 0.048849)

( 0.043287,-0.001081) ( 0.050000, 0.000000) (-0.035696, 0.049755) I
(-0.036926,-0.048849) (-0.035696,-0.049755) ( 0.100000, 0.000000)

PSDx - 0.05 g2 /Hz Ijxyi - 0.866 LOxy - 1.40 i
PSDy g2  z - 0.866 LOyz - 125.70

PSDz - 0.10 g2/Hz i7xzl - 0.866 L~zx -- 127.1 °

Root: Vector: Normalized so X component is real 3
X Y Z

0.183315 g2/Hz -> (0.490241,0.) ( 0.490088,-0.012234) (-0.434562,-0.574877)

0.009985 g2/Hz -> (0.509602,0.) ( 0.509383,-0.012709) ( 0.418073, 0.553071) 3
0.006700 g2/Hz -> (0.707116,0.) (-0.706877, 0.017643) ( 0.000009, 0.000009)

The phase angles of these roots are the same as the phase angles of the

coherence vectors they came from. Since the vectors are normalized so the

X component is all real, the relevant coherence angles are LO YX and L9zx.

All the phase angles are equal to the appropriate term or 180 (a minus

sign) subtracted from it. This is illustrated below: I
Angle of each vector: i
0.183315 g2 /Hz -> 0.00 -1.4° -127.1°

0.009985 g2 /Hz -> 0.00 -1.40 52.90

0.006700 g2/Hz -> 0.00 178.60 52.90 3
These vectors could be used to calculate Fourier series to be used in

generating time histories, however, they are of no use in finding the

direction of the maximum amplitude since they are complex.

As has already been demonstrated there is no interaction between the

complex parts of the spectral matrix and the diagonal where the roots

ultimately are found. For this reason it seemed reasonable to root the

real part of the spectral matrix and numerically'see if the maximum

response was in the direction of the vectors from the real part of the

matrix. This turns out to be the case.
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3 Figure 2 Constant Phase, Random Amplitude Coherence

Figure 2a The Test PSD Values Figure 2b Roots of the Complex Matrix
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Proceeding with the same numbers as before and rooting the real part of the
matrix, the real matrix roots are shown in Figure ic. They are irregular
and bounded by the complex matrix roots. The vectors are real and indicate
the rotation vector required to point in the direction of each root. For I
the numerical example above the results are as follows:

Roots of the Real Part: Vectors: 3
X Y Z

0.148107 g2/Hz -> 0.486575 0.480224 -0.729815
0.045192 g2/Hz -> 0.505105 0.526963 0.683505
0.006701 g2/Hz -> 0.712821 -0.701210 0.013844

Pre and post multiplying these vectors times the spectral matrix produces
an orthogonality matrix as follows: 5
Orthogonality Test:

( 0.148107, 0.000000) ( 0.000000, 0.069735) ( 0.000000,-0.000129) 3
( 0.000000,-0.069735) ( 0.045192, 0.000000) ( 0.000000,-0.000037)
( 0.000000, 0.000129) ( 0.000000, 0.000037) ( 0.006701, 0.000000)

Rotating in the directions indicated by the eigen vectors, the value of the
root is obtained as the PSD level at that frequency in that direction.
Further, investigating the vicinity of the largest and smallest root
reveals that they are a maximum and a minimum respectively.

Figure Id illustrates the results of rotating the test specification to an
arbitrary direction (e.g., <.577,.577,.577>). The maximum and minimum m
roots of the complex matrix have also been plotted for reference. Notice

that the PSD in arbitrary directions is not smooth and ranges arbitrarily
as a function of frequency between the maximum and minimum values.

The procedure of using constant coherence and randomly selecting phase for
a test specification has serious deficiencies. The amplitude of the test
is not limited to the range of numbers between the three input
specifications. Further the test specification is irregular in any
direction except the original X, Y, and Z axes. Finally, the maximum
amplitude and minimum amplitude are irregular and depends on the randomly 3
selected phase to determine both the direction and amplitude of the test.
To much is being determined by a random number generator using this
procedure. 3
CONSTANT ANGLE, RANDOM AMPLITUDE COHERENCE 3
A second procedure for writing a 3-D test specification would be to select
the coherence amplitude with a random number generator ranged between 0 and
I for two of the coherences and limited by the coherence constraint for the I
third coherence. The three phase angles would be set to constant angles
(e.g., 450, 900, and -1350). The results of this procedure are shown in
Figure 2. 3
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IFigure 3 90* Phase, Constant Amplitude Coherence

Figure 3a The Test PSD Values Figure 3b Roots of the Complex Matrix
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The roots of the complex spectral matrix are irregular with a tremendous I
variation in the smallest root as shown in Figure 2b. This reflects the
fact that the smallest root will be equal to zero if the three coherent
values form equality in the coherence constraint. Picking the coherence U
values with a random number generator produces values that come quite close
to equality, thus the lower root comes very close to being zero.

Just as before, the roots of the real part of the spectral matrix are i
between the roots of the complex part as shown in Figure 2c. In
particular, the smallest root is considerably better behaved when rooting
the real part of the spectral matrix. Again the roots of the real part of I
the spectral matrix are the largest and smallest value of PSD that can be
observed in any direction in 3-D space.

Finally, rotating to an arbitrary direction <.577,.577,.577> produces the
PSD shown in Figure 2D. This result is considerably better behaved than
the corresponding PSD from the previous example, however, it is still
irregular.

This procedure suffers from much the same problem as before: PSDs larger
than the input PSDs are observed spatially. Very low amplitudes occur in I
some directions, and the PSDs observed in directions other than the input

directions are irregular.

90" PHASE, CONSTANT AMPLITUDE COHERENCE

The features desired in a test bpecification are as follows: 3
1. PSD values should not exceed the largest input specification or be

smaller than the smallest input specification.

2. The roots of the real part of the spectral matrix should correspond to
the input PSDs so the directions of the responses are fixed. 3

3. Rotated PSDs should be straight lines interpolating smoothly between
the input PSDs. 3

The most complicated matrix that can achieve the second objective is one
with no off diagonal real parts. In this way, illustrated in Figure 3, the
input specification already diagonalizes the real part of the spectral
matrix, and therefore are the roots of the matrix. The imaginary parts of I
the matrix still have to satisfy the requirements of the coherence and
phase angle constraints. For the three phase angles to be at 90° and still
add up to 0° (or 3600, etc.), it is necessary for one angle to be zero, and 3
the other two to be +90° and -90° . This means one of the three coherence
values has to be zero, to let the term with phase angle zero have no real

part.

Selecting a constant coherence under these conditions is some what
limiting. One coherence amplitude must be zero, so the coherence
constraint reduces to Equation I below:

1 Y xz*Yzx + Yyz*7zy where: Yxy - (0.,0.) 1) 3
5-7
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Figure 4 90* Phase, Random Amplitude Coherence

Figure 4a The Test PSI) Values Figure 4b Roots of the Complex Matrix
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The largest constant value of coherence that can satisfy Equation I is n
0.707 compared to the largest value that can satisfy the general coherence
constraint which is 1. 1
Figure 3 illustrates the same set of curves as before for a coherence
amplitude of 0.5 and randomly selected phase angles of 90*. The thickening
of the lines in Figure 3b is because there are two sets of roots reflecting
whether the zero coherence value aligns with the larger Z amplitude. This
procedure satisfies all the requirements of a good 3-D test specification,
but the value of the coherence is limited to a lower value than observed in
the real world. I
90- PHASE, RANDOM AMPLITUDE COHERENCE 5
Another possibility is to select one of the two arbitrary coherence
amplitudes with a random number generator ranged between zero and one.
Then Equation 1 can be used to select the range for a random number I
generator to select the other value. This procedure produces the results
show in Figure 4. Just as before, the complex roots vary over a wide range
depending on where the zero amplitude coherence is located in the matrix, g
and also depending on how close Equation I comes to equality.

The roots of the real part of the spectral matrix are well behaved and
produce rotations that are reasonable using this procedure. Notice that
when the amplitudes all become equal (from 200 to 500 Hz), the rotated PSD
shown in Figure 4d also takes on the constant value. For three equal
inputs the result is a sphere of constant amplitude.

A typical spectral matrix using this procedure is shown below:

Spectral Matrix:

( 0.050000, 0.000000) ( 0.000000, 0.036843) ( 0.000000, 0.000000)
(0.000000,-0.036843) ( 0.050000, 0.000000) ( 0.000000,-0.035197) I
( 0.000000, 0.000000) ( 0.000000, 0.035197) ( 0.100000, 0.000000)

PSDx - 0.05 g2/Hz 17xy - 0.736868 Loxy - 90

PSDy - 0.05 g2/Hz I yzJ - 0.497/67 Loyz 90 °

PSDZ - 0.10 g2/Hz I7xzI - 0.000000 LOzx 00

Root: Vector: Normalized so X component is real
X Y Z

0.122850 g2/Hz -> (0.265500,0.) ( 0.000000,-0.524973) ( 0.808649, 0.000000)
0.071166 g2/Hz -> (0.740874,0.) ( 0.000000,-0.425627) (-0.519565, 0.000000)
0.005984 g2/Hz -> (0.616940,0.) ( 0.000000, 0.737052) ( 0.275934, 0.000000)

Roots of the Real Part: Vectors:
X Y Z

0.100000 g2/Hz -> 0.000000 0.000000 1.000000
0.050000 g2/Hz => 1.000000 0.000000 0.000000
0.050000 g2/Hz -> 0.000000 1.000000 0.000000
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CONCLUSIONS

Controlling the coherence of the three shaker inputs doesn't control the
coherence away from the shaker. The coherence away from the shaker is
controlled by the modal response. The mode only responds to an input in
one direction, i.e., the direction of the modal response at the shaker.
Any input perpendicular to the mode's direction is ignored regardless of
coherence with other inputs. Since the whole mode responds to only one

I input, the response over the whole test article at that frequency is highly
coherent when the local direction of the mode is compared to the local
direction of the input.

5 The amplitude of the coherence determines the amount of the variation
between principal axes of the ellipsoid at the frequency it applies to.
The roots of the complex spectral matrix do not depend on the phase angle,
only the amplitude of the coherence and the PSD values. Zero coherence
produces uniform principal axes and consequently a sphere. The PSD values
scale the ellipsoid up or down along the coordinates they apply to. The
phase angles of the coherence orient the principal axes of the ellipsoid in
space and time.

Controlling the narrow band amplitude in the direction of the local modal
response at the shaker controls the amplitude of the response all along the
test article. The 3-D shape of the random input at each frequency could be

an arbitrarily oriented ellipsoid. Avoiding having the ellipsoid oriented
along the three shaker directions requires coherence between the three
shaker inputs. Coherence is the only way to get the response at an angle
to the shakers to exceed the response in the direction of the shakers. The
real part of the coherence reorients the principal axes of the 3-D random
input so the ellipsoidal surface does not align with the shaker axes. This
makes some other direction than one of the shaker directions have the
largest amplitude.

Sufficient data to build a test specification with arbitrary axis
orientation will rarely be available. Luckily, it is not really necessary.
Since a mode will only respond to an input in one direction, the test input
can be spherical at the correct amplitude and the mode will filter out the
input in it's direction. The test specification can be obtained by
enveloping 3-D data reduced to give principal responses, or simply by
enveloping a large amount of data in all different directions. If
distinctions between X, Y, and Z are desired, it is possible to specify
different PSD levcls in the different directions just as has always been
done. Then taking zero coherence between the shakers, the input will be
egg shaped with the principal directions aligned with the shaker
directions. For more generality one of the 900 phase angle specifications
can be used to enter non zero coherence values and still obtain the desired
amplitudes.

For still more generalized coherence, the physical orientation of the test
specimen must be controlled both in use and on the shaker. For example, if
the test specimen is being tested for the transportation vibration
environment, the test specimen must always be physically oriented in the3 same direction during transportation. A package can be set down in almost
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any direction so spatial distinctions in the input accelerations (e.g., i
along path, cross path, and vertical) can not be correlated to the package

orientation. Under these circumstances, the coherence should be zero and

the amplitude should envelope the response in all three axes. 3
In the rare instances where the physical configuration is repeatable and

there is sufficient experimental data to actually specify a complete
spectral matrix; there is still the problem of averaging complex numbers to I
envelope a large amount of data. The phase angle fixes the relative signs
of the inputs, and thus, the quadrant that the data falls in. It is
necessary to use a procedure that keeps track of the phase angle in order

to produce meaningful envelopes of the data. If one sets the amplitudes
correctly and sets the phase angle wrong, the input will be large in some
other direction than the data. It is like specifying a large X input
because the data indicated that Z was high. Unless the data is to
reproduce a single set of physical measurements at an input point, it does

not seem advantageous to use a more general test specification.

On the other hand, there is tremendous advantage to using the PSD's in the

three shaker directions and zero coherence. This specification requires no
more data than currently is called out when three individual test axes are

specified. It will excite the test article to the same levels achieved in
the conventional test along the shaker axes. At angles to the shaker axes,

the input would be ellipsoidal, faring a smooth curve between shaker inputs

with maximum amplitude at the shaker. The ellipsoid will produce slightly i
higher inputs at directions other than the shaker direction, however, the

total duration of exposure will be reduced by 1/3 to a single test rather
than three individual tests.

I
I
I
I
U
I
I
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CHAPTER 6 3-D COLOR GRAPHICS

INTRODUCTION

The 3-D shaker has unique display considerations arising from the three
dimensional nature of the excitation. Also, a very capable multicolor
display system (Evan and Sutherland, model PS 390) is available to calculate
and output displays as required. Thus the issue is how the new display I
system can best be utilized to address 3-D testing.

The displays to be considered include the test control display used by the
test operator to monitor the test's progress and also more general displays
to demonstrate what is happening in real time or in the post test
environment operating from data files. The objectives of these two types of

displays are quit different. The operator needs to be shown the parameters
that are under specification control to observe any out of specification
conditions and to manually shutdown if they occur. Data that is not under

specification control should not be shown as it potentially can distract the I
operator. To the extent possible, the operator's display should be very
simple and independent from the test control system. Data entry should be
kept to an absolute minimum to keep setup time short and to minimize the
possibility of error. At the same time, the display should recalculate the
data to provide an independent check on the test control system.

The data reduction class of display is quit different. Potentially it I
should cover all the relevant characteristics of each form of test. The
tests under discussion are sine, random, and transient. Data reduction
techniques can be classified as control, waveform, or response. Actually, i
either control or response measurements can be examined for waveform.
However, the techniques are the same so it is simpler to call waveform a
category rather than another dimension. Finally each of these data

reduction techniques can be considered in the time or frequency domain.
This produces the following buzz word generator to be examined for forms of
data display: 3

Sine 1 Control I fFrequency Domain)

Random Waveform
TransientJ 1Response Time Domain J

Sine Test Analysis of Control Channels in the Frequency Domain.

Wideband RMS and Tracking Filter i

Sine Test Analysis of Control Channels in the Time Domain.
Oscillographs 3

Sine Test Analysis of Waveform in the Frequency Domain.
Zoom Fourier Transform

Sine Test Analysis of Waveform in the Time Domain. i
3-D Oscilloscope

Sine Test Analysis of Response in the Frequency Domain. 3
Wideband RMS and Tracking Filter
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Thus the following analysis types need to be discussed with respect to 3-D i
data.

a. Autocorrelation and Cross Correlation
b. Distribution Function
c. Finite Fourier Transform
d. Harmonic Analysis I
e. Oscillographs
f. Principal Components
g. Spectral Matri I
h. Transfer Function

i. Wideband RMS and Tracking Filter
j. Zoom Fourier Transform
k. 3-D Oscilloscope

OPERATIONS PRIOR TO DATA DISPLAYS 3
A great deal of flexibility can be gained by allowing major operations
before the data is to be displayed. When data first enters the system it is
advisable to have a data descriptor file containing ids, labels, physical
units, cable routing, default display order, etc. that identify the data.
Given the color display system it might be a good idea to identify each
channel with a default display color, for example three numbers indicating
the intensity of red, green, and blue, to be used when displaying the data
from the channel unless other considerations over ride this color scheme.
The color scheme could be used to identify components of a test article, or 3
instrumentation directions, or test configurations, or instrumentation types
(accelerometers versus strain gages).

Given the 3-D nature of the system it would be very useful to have a set of i
direction cosines in the instrumentation file for each accelerometer. Data
for this file could be easily generated by sinusoidal excitation at a very
low frequency and level in X, followed by Y, followed by Z. Software could i
be set up to calculate the direction cosines from this series of tests.
This procedure would also allow testing the calibrations to some extent
because the overall amplitude should be very predictable. In spite of the

fact that the data is taken from three different runs, the square root of
the sum of the squares of the components should equal the test amplitude
assuming all three tests are run at the same amplitude. If the measured

amplitude was displayed in tabular form, any calibration errors would be
very obvious. The system should also pay attention to sign, since
accelerometers can be mounted upside down. Also, the system identification

needs to identify triaxial measurements in some way. This allows rotations I
and coordinate transformations to be calculated for each triaxial
measurement.

Similarly, there should be a calibration file organized by run id, I
containing the data needed to convert to physical units by specifying a
scale factor and bias to be removed from each channel. Calibrations

potentially need to be available by run id because the data changes
occasionally between runs. Also, signal calibration data should be stored
in the same file in time sequence, so the software can look backwards to
calculate the calibrations. It is useful to have a description of the

6-3 I



I

3" calibration type (e.g. full scale sine calibration at 200 Hz, or 1.0 volt
step calibration) and a value for the full scale in volts so that it can be

* converted to physical units and compared to the data (at the 95% level) to
detect over ranging. Again, an automatic procedure should be available to
produce calibration data. It should include full scale calibration data in
both the plus and minus directions, and a zero calibration point allowing
automatic removal of any bias in the data. If possible the calibration
procedure should be simple enough to be run before each run.

I Some systems include a polynomial that potentially can remove non
linearities in the data (e.g., OUT-C0 + CIx(IN-BIAS + C2x(IN-BIAS)

2 +
C3x(IN-BIAS)

3 + C4 x(IN-BIAS)
4 ) + ... + CNX(IN-BIAS) . I don't recommend

I using this form because it slows conversion down slightly (you have to put
the conversion process into a loop over a value of N loaded with the data)
and isn't used very often except with N-1. On the other hand if you ever
need it, it is very convenient to have a power series conversion built into

I the system.

Along the same lines, it is often handy to allow for digital filtering of
I the data before it is displayed. Recursive filtering for high pass, low

pass, and bandpass operations are extremely cheap in terms of computational
effort and can clean up a lot of problems. Perhaps VAMP provides enough
capability in this area. Still, providing filtering capability on the front
end of the data reduction system can cure a lot of problems.

Another predisplay function might be to provide for coordinate
I transformations of the triaxial data. Any three orthogonal measurements can

be transformed to cylindrical or spherical coordinates. Again, coordinate
transformations can be done after the fact in VAMP but it might be useful in

I interpreting control data for the sine test where the test is specified as
angular velocities (i.e., rates of change of the angles) or in the zero
coherence random test to investigate the test amplitude as a spherical
normal distribution.

Another predisplay function that often is very useful is numerical
integration or differentiation. Integration using the trapezoid rule isE very effective as long as an adequate sampling rate is being used.
Differentiation is most effective if the second order form of the
differential is used, i.e., dX(t)/dt = (X(t+t) - X(t-At)) / (2xAt).

I Neither of these forms extrapolate to unreasonable values because they only
interpolate between two data points.

Some systems have a generalized calculation function available before the
I displays are output. It is easiest to implement this procedure in inverse

polish notation. The most important functions are as follows: 1) scaler
multiply a channel by a constant, 2) add or subtract two channels, 3) one

I dimensional and two dimensional table lookup, 4) take the log or exponent of
a channel, 5) multiply and divide one channel by another, and so on. Again,
this is a function that VAMP can fill.

I The most important of the predisplay functions for a 3-D system is the
ability to rotate the coordinates from a triaxial measurement through any
orientation in space. Effectively all possible orientations of the

I measurement would be provided from a single triaxial measurement. A joy
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stick could be used to load the rotation matrix into the system. Then there
would be three inputs for each triaxial measurement which would be matrix
multiplied by the rotation matrix to get three output signals in the new
coordinate system. To the data reduction system it would appear that the |
measurements were coming from a triax with a different coordinate system
orientation. All the displays in the system could be rotated using this
procedure, not just the displays with spatial coordinates such as the 3-D
oscilloscope. For example, the 3x3 spectral display could be viewed from I
any orientation not just the one that aligns with the shaker axes.

Any time a joy stick is used, it is essential that some simple method be I
provided for returning the joy stick to nominal. A home key is important to
avoid being misled. Also, it is useful to be able to load precise
coordinates from the keyboard, and to be able to read out precise
coordinates from the display.

The result of this operation could be confusing without some system of
providing for visual identification of the coordinate reference. An icon m
could be used for this purpose representing the shaker planes of the 3-D

system. A perspective, hidden line, picture of a corner with one shaker
plane colored red, one colored blue, and the last plane colored green might
be cheap to calculate and easy to visualize. The backs of the planes might
be darker than the fronts to indicate which side of the plane is being
examined. Every effort should be made to keep the icon very simple and easy
to calculate, it's display time will limit every display in the system.

DISPLAYS AUTOCORREATION AND CROSS CORRELATION

The autocorrelation and cross correlation functions are a seldom used
function displaying the correlation coefficient between one time history and
another time history as a function of the time lag between them. In my
experience, it has been most useful in looking for repeated events in
transient test data. If wavelets come at regular intervals, autocorrelation
is a good way of identifying the shape and timing of the wavelet. Because i
of its definition, it is difficult to calculate the correlation function
continuously with time. It makes most sense when dealing with limited
frames of data. Also, it is hard to see how autocorrelation and cross I
correlation extend into 3-D. There are six independent curves for a single
triaxial set of measurements forming a 3x3 array with the off diagonal data
being symmetric.

I'd put this at the bottom priority.

DISPLAYS DISTRIBUTION FUNCTION

The distribution function is fundamental to discussing the random test in
the time domain. The integral of the distribution function over a region in

space gives the probability of a data point being sampled in that region.
Integrating over all of space gives a value of one. As a practical matter,
it requires a huge amount of data to accurately represent the distribution i
function by direct measurement. Instead the momeucs of the distribution
should be numerically calculated at least through the fifth moment and cross
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moment for each axis, and an expansion in terms of the moments should be
used. A theoretical value of the distribution function can be precalculated
and the expansion could be done as a perturbation to the precalculated
values.

E The display itself resembles a puff ball in space. Possibly the nominal
puff ball could be displayed using color shading and dot density to
represent the local value with a plane or pie cut to see inside. Then theI whole display could be rotated while holding the location of the plane or
pie cut fixed to provide a spatially look at the data. Fixed contour levels
such as 3a could be shown as lines. Variations with time could be displayed
as color changes and/or as contour changes. The averaging time for display

I variations could be adjustable so that the chaotic rapid displays could be
slowed down to show the result averaging to the nominal distribution.

E For zero coherence tests, the 1-D chi squared distribution of the resultant
vector is equivalent to the much more complicated 3-D display.

I DISPLAYS FINITE FOURIER TRANSFORM

The finite Fourier transform is useful for dealing with transient data inI the frequency domain. Because the transient data isn't necessarily
stationary, the only Fourier transformation into the frequency domain that
is still defined is the finite Fourier transform, e.g., a two time point to

I one frequency point transformation that can't necessarily be averaged. For
this application, the interesting question tends to be whether there is any
regular frequency content to the signal and what frequency range the data is
coming in. The amplitude at a frequency is hard to interpret and tends not
to be a major consideration.

This situation lends itself to displaying the instantaneous finite Fourier
I transform data for the last five or six transforms (possibly decaying away

with darker colors being earlier data) and the dynamic upper and lower
envelopes of the previous data. This kind of a display needs a reset button

I to restart the process, and a hold button to make the display hold still.

Data would be available for three channels at a time in a 3-D test. It
could be displayed as three I-D transform amplitude and phase plots, or it

I could be displayed as instantaneous spectral data with three PSD diagonals,
and three coherence functions, and three phase plots. This kind of a
display is going to get extremely busy. The phase data is unlikely to be

I interpretable and might reasonably be held back most of the time.

For many transient waveforms it is possible to average the data. When thisU happens the conventional spectral display would probably be better.

DISPLAYS HARMONIC ANALYSIS

I One of the ways of assessing waveform in the frequency domain is analysis of
the higher harmonics of the signal. If a regular waveform exists which isK not purely one sinusoid, it will show up in the frequency domain as a signal
with regular harmonics of a (lowest, usually largest amplitude) fundamental
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frequency. If the fundamental shows up at F, the harmonics show up at 2F, 3
3F, ... nF. Further, while the phase value at F may not be stable, the
relative phase between F and the higher harmonics will be a fairly stable
function. Each harmonic is characterized by a complex number whose I
amplitude is the ratio to the amplitude of the fundamental and whose phase
is the phase angle relative to the fundamental. A linear regression between
frequency lines in the frequency domain is one good way of identifying and
quantifying harmonics.

For sine work, it is necessary to tell the system about the non stationary
fundamental frequency moving through the system. Then the higher harmonics I
of the fundamental can be curvefit to give an average distortion for the

waveform. If higher harmonics are curvefit continuously as the test
progresses, it is possible to display a single cycle of the distorted signal I
to see what the waveform really looks like.

In 3-D this is much more complicated. The three axes of data potentially
all hold harmonics of the signal. The biggest problem is to find something
to call a fundamental in all the data available to be analyzed. For a sine
test, other than a simple ellipse rotating in a fixed plane, the fundamental
will be a collection of frequencies (typically 20 to 50 frequencies in the I
sine tests I have been proposing), and harmonics are potentially there for
all the frequencies in all the directions. This is a gloriously complicated
problem to figure out what to do with it all.l

As a display, it is very effective to put bars up on the spectral type of
display. One color could be used to represent a single fundamental and all
it's harmonics over all 9 spectral curves. The extent to which each of the
spectral plots (PSD, Coherence, Phase) is the result of the harmonic
relation can be drawn in as the amplitude of the line for each spectral
line. U
Another form of plot that might be used is to reconstruct the waveform from
the Fourier components, and plot it on the 3-D oscilloscope type of display.
This could indicate the type of distortion that is present, e.g., square
wave, triangular wave, clipping, something hitting, etc.

While harmonic analysis is important, it doesn't need to be implemented this I
formally to be available. An experienced test operator can look at a series
of PSDs and see that something spectral is happening in the time history.
Then the oscillograph type of display can reveal the waveform. For this I
reason I put formal harmonic analysis at the bottom priority.

DISPLAYS OSCILLOGRAPHS I
The classical way of looking at raw data in the time domain is oscillograph
plots. Typically these are done at slow speed with the envelope of the data I
as a function of time being displayed. To observe waveform, the plotting
speed is increased. This kind of plot is most useful for sine testing, but
it is also applicable to random data, and general transient data. The
usefulness for random data is increase if a second color is used to
superimpose the local RMS value over the top of the actual time history.
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I There are a number of extensions of this concept into the 3-D regime. The
coordinate system that is being displayed can be changed to reflect a line
of symmetry in the test article using cylindrical coordinates or spherical
coordinates when the test is spherically symmetric as in a zero coherence
random test or a 3-D sine test. The angular coordinates for the generic 3-D

I sine test will work out to be regular linear functions. Of course the
angular coordinates will contain a discontinuity and it is best if the "pen"
is lifted off the paper as the coordinate transitions between 0 and 2W.
Data should be extrapolated to 2n and restarted at 0 without drawingI anything between them. It is very useful to provide a variable
discontinuity point under the operator's control. Any angle 0 can be used
for the discontinuity with 0-2n as the other side of the discontinuity.

I This issue is aggrandized with the name of Riemann surfaces.

Another 3-D extension is to plot the 3-D time history in space. This forms
a puff ball display that can be opened up using a plane or wedge to see the
hollow space inside in the case of a 3-D sine test or more puff ball in the
case of the random test. By plotting only the end points of the vectors, a
scatter plot results. Color coding can be used to show the third dimension

I of the data for a scatter plot.

If a coordinate transform can be used to drop the coordinate space to 2-DE (e.g., using cylindrical coordinates and discarding the angular coordinate
or just looking at two coordinates together), it is possible to draw the 2-D
time history through time in the third dimension. The resulting shape is
snake like in appearance and can be inspected for uniformity of spatial

I coverage and the extent of the envelope. Also clipping would show up this
way. Of course you would want to use the joy stick to move around the 3-D
display. This rotation would be nonstandard and would require additional

I coding because time (instead of space) is being used as a third dimension.

Another 3-D extension is to allow the user to identify a window from theI three X, Y, and Z position plots in time. Then that 3-D geometry could be
displayed in a 3-D oscilloscope type of display. Again, this path could be
inspected in 3-D by changing the point it is viewed from, however, this
rotation would be standard and would require no extra coding.

I The oscillograph class of displays is probably the most fundamental of the
possible displays. It should have the highest priority.

DISPLAYS PRINCIPAL COMPONENTS

5 In the random test, it is possible to find the principal amplitudes
associated with the ellipsoidal surface at each test frequency. While these
coordinates vary with frequency, they diagonalize the spectral matrix. ThusE at any frequency point the coordinates can be changed to a set of three
direction angles indicating the directions of the principle axes, three time
phase angles indicating the timing of the peaks. and a set of threeI amplitudes indicating the largest, smallest, and orthogonal amplitude at
that frequency. This is the same amount of data as is required in the
spectral matrix at a frequency point. In the spectral matrix the nine
numbers are the three PSD values, the three time phase angles between theI- channels, and the three coherence values.

6-8



I

Displaying the spectral matrix in principal component form has the advantage
that the amplitudes are reported in physically understandable values. It is
easier to interpret a value that is the largest or smallest RMS available I
over all of coordinate space. However, the spatial angles and time phase
angles are not nearly so easily interpreted. Similarly, the coherence
values for the conventional spectral matrix are easily understood physically I
and the PSD values, while misleading because they are not principal values
in general, are at least easy to comprehend.

It might be good to present a mixed spectral display showing the largest i
principal value and the smallest principal value as envelopes around each of
the three PSD values on the conventional display. 5
It would be easy to understand the spatial directions of the principal axes
with frequency if a sea urchin type of display were used in 3-D to show all
the principal directions in space. Then the length of the needle could be
used to show frequency. Short needles should show higher frequencies, since
they tend to be less important. It would be nice if the user could type in
a frequency and the corresponding needle would turn red. 3
The time phase lag relationships don't mean much to me in the spectral type
of display. The physical interpretation is the angle at that frequency
which one channel makes with respect to the other in time. To make any I
sense of this, it is necessary to have the 3-D input available. For
example, the relative phase angle between the input force vector and the
response at a point will be 90° for a pure modal response. This kind of
relationship probably exists between phase angles of principal directions in
3-D. As a display technique, one might highlight spectral lines that
exhibit strong modal behavior on a conventional spectral display. 3
Some method of providing more interpretation of the information from the
spectral display is highly desirable because the spectral data itself can
hide so much physical behavior. Principal component analysis is a good i
start in that direction.

DISPLAYS SPECTRAL MATRIX I
The spectral matrix is the most important display for 3-D random analysis
because the random test is specified in terms of these variables. The only I
difference I have with what is currently being done is that I would not plot
cospectra and phase for the off diagonal terms both above and below the
diagonal. Instead, I would plot the phase alone below the diagonal, and the
amplitude of the cospectra above the diagonal. This would allow more plot
area to display the data in.

Another variation on the conventional display would be to show coherence and 5
phase for the off diagonal terms. Again I would plot the coherence above
the diagonal and the phase angle below the diagonal. This is more
interpretable but not directly the coordinates being used to specify the
test for the control system.

I
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For the spectra, cospectra plot that is the test control plot, I would show
the test tolerances around the measured test data. Color should be used to
flag out of specification conditions with red flagging the problem. I would
use a standard color scheme: red for out of specification data, black for
test data within specification, green for the specification boundaries, and
a hard to see color like yellow for the nominal test level. The nominal
test level doesn't really mean anything, only the tolerance boundaries
really matter.

I To keep things comfortable to look at, the specification data should be
averaged over a fixed time interval (e.g., 2 seconds). The averaging timeI should be under the test operator's control. Of course the nearest non zero
integer number of frames would be the actual time average used in practice.
If you want to show data from previous frames, the old curves should be
redrawn in a lighter shade of gray (and red) before each new curve is drawn.
By drawing all the curves over again in the inverse time order, the most
important newer curves will lie on top of the older curves. Some maximum
number of curves (e.g., 3; also under the operator's control) should be usedI to limit the data on the screen.

For looking at response data, I would tend to used a hybrid type of display.I The principal components would be used as envelopes around all three PSD
values. The coherence would be plotted above the axes. The background for
the coherence might be illuminated with a different color depending on the
how large the expression below turned out to be:

I1- r 2  2 -2 2 - + - 2 Cs2- 1)f i l~xzl2cos2L-xz + l4yzI Cos2L7yz xy

-j_ 2I;xy-yz xzlcosLjxy cosL-y cosLyxz

By evaluating the expression and setting the background color on all three
coherence plots accordingly, it would be easy to find structural modes or
regions where the 3-D measurement was coherent for some reason. For
example, the background could be colored light blue whenever the expression
exceeded 0.95 total value. At these points the response would be virtuallyE two dimensional and almost certainly would be the response of a structural
mode.

I Phase data is even harder to understand physically. The only phase
relationship that can easily be understood is the relative phase between the
control accelerometers and some other accelerometer. This is discussed
under transfer functions.

I would consider the spectral display of test data to be among the highest
priority displays in the system.I
DISPLAYS TRANSFER FUNCTIONS

rn Transfer functions involve the identification of the input/output
relationship between multiple channels. While the transfer functions
between the control accelerometers could be calculated, they are not really

I interesting. The real application for transfer functions is between the
control accelerometers (or base forces) and the response at other points in
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the payload. Numerous physical relationships are known in this kind of I
transfer function and the modes of the payload.

The display for transfer functions between three control accelerometers and
three response accelerometers would be a 3x3 matrix of frequency response
curves similar to spectral data. However, each curve would have both
amplitude and phase data associated with it. Unlike spectral data the
transfer function between Xin and Yout is not the same as between Yin and
Xout, so the off diagonal plots are all different! The information in the
phase plot is mostly locating the 90* line (or 0° and 1800 for accelerometer
to accelerometer data). If any frequency band at which the phase was 90I
were illuminated with a light color (e.g., a light green line across the
entire plot at that frequency) on the corresponding amplitude curve, that
would tend to convey most of the data in the phase angle curve without I
actually plotting it. It would be useful to plot another color for all
bands on all the other plots where a 900 phase angle occurred. For example,
a yellow line might indicate that some other curve had a phase angle of 90*
on it. All nine plots would have the same yellow lines on them except for
the one or more plots where that line was green. I
DISPLAYS WIDEBAND RMS AND TRACKING FILTER

The traditional display for sine testing at JPL involves showing the RMS
amplitude and the RMS amplitude of a tracking filter centered on the
fundamental for the sine test. This allows a simple assessment of signal
quality in that the two numbers are the same unless the signal is
significantly distorted.

The tracking filter is extremely easy to implement for a sine test since
there is typically a sine reference available to base the tracking filter I
on. Basically the tracking filter is just the integral of the sine

reference times the raw signal for the "Co" part of the tracking filter, and
the integral of the cosine reference times the raw signal for the "Quad"
part of the signal. The cosine reference is computed from the sine
reference by differentiating the sine reference to get the sign of the
cosine reference and the amplitude can easily be done as a lookup table
based on the current value of the sine reference. The lookup table simply
expresses cos(wt)-SQRT[l-sin2 (Wt)].

No FFT is involved in the processing as implemented at JPL. Frequency is
calculated by counting axis crossings on the sine reference channel.

This procedure is immediately applicable to the 2-D sine test that seems to
be preferred method for implementing sine testing. One simply calculates
"Co" and "Quad" for all three response channels based on the cosine and sine
values available from the input.

I would classify this as a high priority type of analysis. It potentially
can double check the control system for the 2-D sine test, and it can be
very effective as a response analysis.

I
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DISPLAYS ZOOM FOURIER TRANSFORM

I The zoom Fourier transform is accomplished by a combination of filtering and
multiplying the signal times a sinusoid of known frequency at the bottom of

I the zoom range. Sin(wit)xSin(wt)-.5Xcos(wl-w) - .5xcos(wl+w) If wi is the
bottom of the zoom range and Sin(wt) is a Fourier coefficient of the data,
you effectively drop the frequency that the data comes at to 0i-0 by
multiplying be Sin(cIt). If the data is band pass filtered between Wi (to

eliminate lower frequencies) and w2 at the top of the frequency range to be
zoomed, and then multiplied by a sinusoid at wl. The resulting time history
can be converted to the frequency domain using an FFT. The FFT results can

be rearranged to give the correct Fourier data for the zoomed frequency

region.

i This is useful for looking at signals that are slightly distorted in
frequency such as the 3-D sine test data. Because the full range of the FFT

is effectively used to expand a potentially small frequency region between

wl and 12, the frequency resolution can be very accurate. This is really
the only way to look closely at the frequency content of the 3-D sine test.

The signal harmonics are grouped in a band about 1/20 times the fundamental.
For example at 100 Hz everything interesting happens between 95 Hz and 105

I Hz.

As a display, the signals would look very much like Fourier data except that
the frequency axis would be expanded. Potentially the display might be

centered on the current test frequency so that the display holds still with

time. In this mode, unlike Fourier data, the phase data should be
stationary for the control channels, thus the display could usefully show

I the phase.

While this display is potentially very interesting it is also very
i technical. It would take a 5 minute discussion of why this is important to

show it to someone unfamiliar with the 3-D system. I would classify this as

being a bottom priority.

I DISPLAYS 3-D OSCILLOSCOPE

I Waveform has historically been analyzed using an oscilloscope. On an

oscilloscope there are basically two controls: a trigger to decide how often
the oscilloscope refreshes the image, and a "frequency" control that varies

how long the display is put on the screen after the trigger. Actual the
frequency control is really a period control, adjusting the time duration

until it is just one cycle. Because the images usually come very fast (for
electrical signals), the properly adjusted oscilloscope appears to freeze

I the waveform on the screen with time as the X axis. In vibration test
control, oscilloscopes tend to be too slow at the low end of the frequency

range.

I For 3-D work, we need something equivalent to an oscilloscope that captures

a short duration burst of 3-D data (i.e., three orthogonal channels instead
of just one channel) over a short period of time. Then when the same point

I in the cycle is reached again, the signal might be "refreshed" just as it is
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with an oscilloscope. An oscilloscope can be set up to free run or operate 0
as a storage scope on a single frame. These same modes need to be available
for the 3-D oscilloscope. The trigger needs to be able to detect data in a
spatial area, e.g., X around 1.0 g, Y around -1.0 g, and Z around 0.0 g. I
Then some fixed amount of data would be acquired, such as 10240 points for
each of the three channels. Once the data was acquired, the duration
control would allow looking at some shorter segment of the data to find a I
repetitive pattern. Because three orthogonal channels were acquired
together, 3-D images of the path could be drawn on the shaker. Using a joy
stick it would be possible to move around the image spatially.

Anyone who has used a real oscilloscope knows that free running displays are
too hard to adjust. Just varying the "frequency" control is theoretically
enough to freeze a repetitive image, but in practice it is much easier to do I
if the trigger is set up to restart the signal at a regular interval. This
same problem will be even more pronounced when trying to "stop" a 3-D
waveform where the user has to visualize the waveform in 3-D from a 2-D
display. A good control would be a time lag forcing some elapsed time
before starting to look for the next trigger (i.e., a adjustable control
offering something like 2.0 seconds minimum time between triggers). The
user will need to examine an image fully before picking up another one.

This kind of waveform examination is very general, and potentially of use
for any test type. It is also very arty, with good intuitive understanding I
from large segments of the engineering public. For this reason, I would

consider this to be a high priority display.

CONCLUSIONS

Pre display functions seem very important at this juncture. A good job I
needs to be done of interfacing the measurement channels and the data
displays. If this is done in an ad hoc way, the result will be extensive
rewriting of the displays as the issues in passing the physical data to the I
displays become resolved. Standard subroutines need to be developed to
address the issues of physical units, channel identification, calibration
data, etc. on the front end of each display. This needs to be very
carefully thought out or it will seriously limit the system.

Perhaps the most interesting idea in this write up is the concept of
providing identification of all triaxial measurements and providing a I
standard per analysis method of rotating them. Potentially this allows all
triaxial measurements to be viewed in 3-D with very little code.
Effectively any orientation of measurement can be deduced from the triaxial
data, so the orientation can of the measurements can be rotated without
changing any of the display functions.

The highest priority displays seem to be the spectral data, the oscillograph i
data, the 3-D oscilloscope, and the tracking filter. There are a number of
interesting things that can be done with all of these displays beyond simply
implementing a single static type of display. The spectral display can have I
variable averaging time, envelopes and overlays for the test specification,
cospectra and phase versus coherence and phase, decaying curves from
previous averaging times, and so on. The oscillograph data can be converted
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lI into different coordinates, the time scale can be varied, parts of the
signal can be passed to the 3-D oscilloscope type of display for viewing in
3-D, if axes of symmetry exist, 3-D data can be transformed into 2-D data
for viewing in 3-D as a function of time, and so on. The tracking filter
can display wideband and filtered RMS, and phase information relative to the

i other axis (perhaps in the form of a circle that distorts if the signals get
out of phase).

There are a large number of intermediate priority displays: the distribution
function, the finite Fourier transform, principal components, and transfer
functions. Some are clearly less important: autocorrelation and cross
correlation, harmonic analysis, and the zoom Fourier transform.

I
I
I
I
I
I
I
I

I
I
I
I
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